Skip to main content

Pathway Crosstalk Network

  • Chapter
  • First Online:
Systems Biology for Signaling Networks

Part of the book series: Systems Biology ((SYSTBIOL))

  • 1994 Accesses

Abstract

Common diseases such as cancer, diabetes, obesity, and asthma are caused by defects in multiple genes and pathways. Thus, it is not surprising that the current one-target-one-compound approach in drug discovery and development has failed to deliver as many efficacious medicines as expected in the post-genomic era. Network biology offers new opportunities for pharmaceutical industry as it aims at understanding diseases by investigating disease mechanism at the network level. We proposed a novel way to study biological networks through pathway crosstalk. We developed a computational approach to systematically detect crosstalk among pathways based on protein interactions between pathway members. We built a global pathway crosstalk network that includes 580 pathways and covers 4,753 genes. This network exhibits the same characteristics as gene networks such as the scale-free property and clustering of functionally related network nodes. We further used this network to understand colorectal cancer progression to metastasis based on transcriptomic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Shahrour F, Diaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20:578–580

    Article  CAS  PubMed  Google Scholar 

  • Bader GD, Betel D, Hogue CW (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 31:248–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bagheri S, Nosrati M, Li S et al (2006) Genes and pathways downstream of telomerase in melanoma metastasis. Proc Natl Acad Sci USA 103:11306–11311

    Article  CAS  PubMed  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57:289–300

    Google Scholar 

  • Brohee S, Faust K, Lima-Mendez G et al (2008) Network Analysis Tools: from biological networks to clusters and pathways. Nat Protoc 3:1616–1629

    Article  CAS  PubMed  Google Scholar 

  • Chatr-aryamontri A, Ceol A, Palazzi LM et al (2007) MINT: the molecular INTeraction database. Nucleic Acids Res 35:D572–D574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Yuan B (2006) Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22:2283–2290

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhu J, Lum PY et al (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452:429–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christensen JG, Burrows J, Salgia R (2005) c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 225:1–26

    Article  CAS  PubMed  Google Scholar 

  • Chua HN, Sung WK, Wong L (2006) Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22:1623–1630

    Article  CAS  PubMed  Google Scholar 

  • Collins SR, Miller KM, Maas NL et al (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446:806–810

    Article  CAS  PubMed  Google Scholar 

  • Dollery CT (2007) Beyond genomics. Clin Pharmacol Ther 82:366–370

    Article  CAS  PubMed  Google Scholar 

  • Giot L, Bader JS, Brouwer C et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736

    Article  CAS  PubMed  Google Scholar 

  • Goeman JJ, Buhlmann P (2007) Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23:980–987

    Article  CAS  PubMed  Google Scholar 

  • Han JD (2008) Understanding biological functions through molecular networks. Cell Res 18: 224–237

    Article  CAS  PubMed  Google Scholar 

  • Han JD, Bertin N, Hao T et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430:88–93

    Article  CAS  PubMed  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S et al (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  CAS  PubMed  Google Scholar 

  • Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  CAS  PubMed  Google Scholar 

  • Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Li H, Hu H et al (2007) Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics 23:i222–i229

    Article  CAS  PubMed  Google Scholar 

  • Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    Article  CAS  PubMed  Google Scholar 

  • Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:644–652

    Article  CAS  PubMed  Google Scholar 

  • Jeong H, Mason SP, Barabasi AL et al (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Gentleman R (2007) Extensions to gene set enrichment. Bioinformatics 23:306–313

    Article  PubMed  Google Scholar 

  • Keller MP, Choi Y, Wang P et al (2008) A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res 18:706–716

    Article  CAS  PubMed  Google Scholar 

  • Lage K, Karlberg EO, Storling ZM et al (2007) A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 25:309–316

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Date SV, Adai AT et al (2004) A probabilistic functional network of yeast genes. Science 306:1555–1558

    Article  CAS  PubMed  Google Scholar 

  • Li S, Armstrong CM, Bertin N et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Agarwal P, Rajagopalan D (2008) A global pathway crosstalk network. Bioinformatics 24:1442–1447

    Article  CAS  PubMed  Google Scholar 

  • Liu ET (2005) Systems biology, integrative biology, predictive biology. Cell 121:505–506

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ghanim M, Xue L et al (2009) Analysis of Drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer. Science 323:1218–1222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loscalzo J, Kohane I, Barabasi AL (2007) Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol 3:124

    Article  PubMed Central  PubMed  Google Scholar 

  • Macara IG, Lounsbury KM, Richards SA et al (1996) The Ras superfamily of GTPases. FASEB J 10:625–630

    CAS  PubMed  Google Scholar 

  • Mani KM, Lefebvre C, Wang K et al (2008) A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol 4:169

    Article  PubMed Central  PubMed  Google Scholar 

  • Mercurio AM, Lipscomb EA, Bachelder RE (2005) Non-angiogenic functions of VEGF in breast cancer. J Mammary Gland Biol Neoplasia 10:283–290

    Article  PubMed  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S et al (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  CAS  PubMed  Google Scholar 

  • Mishra GR, Suresh M, Kumaran K et al (2006) Human protein reference database – 2006 update. Nucleic Acids Res 34:D411–D414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273

    Article  CAS  PubMed  Google Scholar 

  • Nevins JR (2001) The Rb/E2F pathway and cancer. Hum Mol Genet 10:699–703

    Article  CAS  PubMed  Google Scholar 

  • Orth AP, Batalov S, Perrone M et al (2004) The promise of genomics to identify novel therapeutic targets. Expert Opin Ther Targets 8:587–596

    Article  CAS  PubMed  Google Scholar 

  • Orton RJ, Sturm OE, Vyshemirsky V et al (2005) Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J 392:249–261

    Article  CAS  PubMed  Google Scholar 

  • Pang H, Lin A, Holford M et al (2006) Pathway analysis using random forests classification and regression. Bioinformatics 22:2028–2036

    Article  CAS  PubMed  Google Scholar 

  • Park J, Lee DS, Christakis NA et al (2009) The impact of cellular networks on disease comorbidity. Mol Syst Biol 5:262

    Article  PubMed Central  PubMed  Google Scholar 

  • Pawson T, Linding R (2008) Network medicine. FEBS Lett 582:1266–1270

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Leal JB, Enright AJ, Ouzounis CA (2004) Detection of functional modules from protein interaction networks. Proteins 54:49–57

    Article  CAS  PubMed  Google Scholar 

  • Prelic A, Bleuler S, Zimmermann P et al (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22:1122–1129

    Article  CAS  PubMed  Google Scholar 

  • Provenzani A, Fronza R, Loreni F et al (2006) Global alterations in mRNA polysomal recruitment in a cell model of colorectal cancer progression to metastasis. Carcinogenesis 27:1323–1333

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan D, Agarwal P (2005) Inferring pathways from gene lists using a literature-derived network of biological relationships. Bioinformatics 21:788–793

    Article  CAS  PubMed  Google Scholar 

  • Ramani AK, Bunescu RC, Mooney RJ et al (2005) Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol 6:R40

    Article  PubMed Central  PubMed  Google Scholar 

  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rives AW, Galitski T (2003) Modular organization of cellular networks. Proc Natl Acad Sci USA 100:1128–1133

    Article  CAS  PubMed  Google Scholar 

  • Sartor MA, Leikauf GD, Medvedovic M (2009) LRpath: a logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics 25:211–217

    Article  CAS  PubMed  Google Scholar 

  • Schadt EE, Friend SH, Shaywitz DA (2009) A network view of disease and compound screening. Nat Rev Drug Discov 8:286–295

    Article  CAS  PubMed  Google Scholar 

  • Schadt EE, Lamb J, Yang X et al (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segal E, Friedman N, Koller D et al (2004) A module map showing conditional activity of expression modules in cancer. Nat Genet 36:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Segal E, Shapira M, Regev A et al (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34:166–176

    Article  CAS  PubMed  Google Scholar 

  • Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA 100:12123–12128

    Article  CAS  PubMed  Google Scholar 

  • Stein LD (2004) Using the Reactome database. Curr Protoc Bioinform Chapter 8:Unit

    Google Scholar 

  • Stelzl U, Worm U, Lalowski M et al (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  CAS  PubMed  Google Scholar 

  • Sun N, Zhao H (2004) Genomic approaches in dissecting complex biological pathways. Pharmacogenomics 5:163–179

    Article  CAS  PubMed  Google Scholar 

  • Tai F, Pan W (2007) Incorporating prior knowledge of gene functional groups into regularized discriminant analysis of microarray data. Bioinformatics 23:3170–3177

    Article  CAS  PubMed  Google Scholar 

  • Tanay A, Sharan R, Kupiec M et al (2004) Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci USA 101:2981–2986

    Article  CAS  PubMed  Google Scholar 

  • The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  PubMed Central  Google Scholar 

  • Tong AH, Lesage G, Bader GD et al (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    Article  CAS  PubMed  Google Scholar 

  • Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Voy BH, Scharff JA, Perkins AD et al (2006) Extracting gene networks for low-dose radiation using graph theoretical algorithms. PLoS Comput Biol 2:e89

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang J, Loberg R, Taichman RS (2006) The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 25:573–587

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhang B, Wolfinger RD et al (2008a) An integrated approach for the analysis of biological pathways using mixed models. PLoS Genet 4:e1000115

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang X, Dalkic E, Wu M et al (2008b) Gene module level analysis: identification to networks and dynamics. Curr Opin Biotechnol 19:482–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei Z, Li H (2007) Nonparametric pathway-based regression models for analysis of genomic data. Biostatistics 8:265–284

    Article  PubMed  Google Scholar 

  • Wuchty S, Oltvai ZN, Barabasi AL (2003) Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat Genet 35:176–179

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Yu H, Jansen R et al (2004) Analyzing cellular biochemistry in terms of molecular networks. Annu Rev Biochem 73:1051–1087

    Article  PubMed  Google Scholar 

  • Xue H, Xian B, Dong D et al (2007) A modular network model of aging. Mol Syst Biol 3:147

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang X, Deignan JL, Qi H et al (2009) Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nat Genet 41:415–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeger-Lotem E, Sattath S, Kashtan N et al (2004) Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci USA 101: 5934–5939

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Gordon M, Lenz HJ (2006) Novel approaches to treatment of advanced colorectal cancer with anti-EGFR monoclonal antibodies. Ann Med 38:545–551

    Article  CAS  PubMed  Google Scholar 

  • Zhao SD, Li Y (2007) Extracting functional modules from biological pathways. Nat Preced http://dx.doi.org/10.1038/npre.2007.1457.1031

  • Zhu J, Zhang B, Schadt EE (2008) A systems biology approach to drug discovery. Adv Genet 60:603–635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Computational Biology, Drug Discovery, and GlaxoSmithKline R&D. I thank Dilip Rajagopalan, Pankaj Agarwal, and Sihai D. Zhao for their contributions to the work (Li et al. 2008; Zhao and Li 2007) cited in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, Y. (2010). Pathway Crosstalk Network. In: Choi, S. (eds) Systems Biology for Signaling Networks. Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5797-9_20

Download citation

Publish with us

Policies and ethics