Skip to main content

Cellular-Level Gene Regulatory Networks: Their Derivation and Properties

  • Chapter
  • First Online:
Systems Biology for Signaling Networks

Part of the book series: Systems Biology ((SYSTBIOL))

  • 1942 Accesses

Abstract

There is considerable direct and indirect evidence that gene regulatory networks are largely self-regulating, rather than exclusively regulated by upstream master control genes. This leads to several familiar properties of cells, such as homeostatic tendencies and robustness to internal and external noise. Moreover it implies that certain cell state transitions are only possible following the modification of the expression levels of many genes. Therefore these large collections of genes are functional units in the cell whose collective behavior can be modeled. This motivates the inference of gene regulatory networks, whose components are large groups of genes, a goal that by reducing the total amount of data required to infer the model, serendipitously allows the inference of regulatory networks inclusive of the entire genome. Highly predictive global regulatory networks can be derived using linear models applied to gene expression level temporal transitions, revealing a wealth of specific conclusions about cellular regulation at the highest levels. For example, ATP synthesis is shown to the predominant activator of large groups of genes, while gene groups involved in DNA replication repress transcription globally. Moreover, these relationships can be probed for their variance or invariance across scale by inferring networks composed of varying numbers of gene groups, equivalent to tuning the resolution of a map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118:4947–4957

    Article  CAS  PubMed  Google Scholar 

  • Alter O, Brown PO, Botstein D (2000) Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA 97:10101–10106

    Article  CAS  PubMed  Google Scholar 

  • Balabanov S, Bartolovic K, Komor M, Kanz L, Hofmann WK, Brümmendorf TH (2005) Gene expression profiling of normal hematopoietic progenitor cells under treatment with imatinib in vitro. Leukemia 19:1483–1485

    Article  CAS  PubMed  Google Scholar 

  • Balaji S, Babu MM, Iyer LM, Luscombe NM, Aravind L (2006) Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J Mol Biol 360:213–227

    Article  CAS  PubMed  Google Scholar 

  • Balazsi G, Barabasi AL, Oltvai ZN (2005) Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. Proc Natl Acad Sci USA 102:7841–7846

    Article  CAS  PubMed  Google Scholar 

  • Bang AG, Carpenter MK (2008) Deconstructing pluripotency. Science 320:320–321

    Article  Google Scholar 

  • Bar-Yam Y, Harmon D, de Bivort B (2009) Systems biology. Attractors and democratic dynamics. Science 323:1016–1017

    Article  CAS  PubMed  Google Scholar 

  • Berger SL (1999) Gene activation by histone and factor acetyltransferases. Curr Opin Cell Biol 11:336–341

    Article  CAS  PubMed  Google Scholar 

  • de Bivort B, Huang S, Bar-Yam Y (2004) Dynamics of cellular level function and regulation derived from murine expression array data. Proc Natl Acad Sci USA 101:17687–17692

    Article  PubMed  Google Scholar 

  • de Bivort B, Huang S, Bar-Yam Y (2007) Empirical multiscale networks of cellular regulation. PLoS Comput Biol 3:1968–1978

    Article  PubMed  Google Scholar 

  • Braha D, Bar-Yam Y (2004) Topology of large-scale engineering problem-solving networks. Phys Rev E 69:1–7

    Article  Google Scholar 

  • Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547

    Article  CAS  PubMed  Google Scholar 

  • D’Haeseleer P, Wen X, Fuhrman S, Somogyi R (1999) Linear modeling of mRNA expression levels during CNS development and injury. Pac Symp Biocomput 4:41–52

    Google Scholar 

  • Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Z, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295:1669–1678

    Article  CAS  PubMed  Google Scholar 

  • Davie JR, Spencer VA (1999) Control of histone modifications. J Cell Biochem Suppl 32–33:141–148

    Article  Google Scholar 

  • Dawkins R (1976) The selfish gene (New ed.). Oxford, UK: Oxford University Press

    Google Scholar 

  • Deininger MW, Druker BJ (2003) Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol Rev 55:401–423

    Article  CAS  PubMed  Google Scholar 

  • Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  CAS  PubMed  Google Scholar 

  • Enver T, Heyworth CM, Dexter TM (1998) Do stem cells play dice? Blood 92:348–351; discussion 352

    Google Scholar 

  • Ferrell JEJ, Machleder EM (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280:895–898

    Article  CAS  PubMed  Google Scholar 

  • Gardner TS, di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301:102–105

    Article  PubMed  Google Scholar 

  • Gene Ontology Consortium (2001) Creating the gene ontology resource: design and implementation. Genome Res 11:1425–1433

    Article  Google Scholar 

  • Gilman AG, Simon MI, Bourne HR, Harris BA, Long R, Ross EM, Stull JT, Taussig R, Arkin AP, Cobb MH, Cyster JG, Devreotes PN, Ferrell JE, Fruman D, Gold M, Weiss A, Berridge MJ, Cantley LC, Catterall WA, Coughlin SR, Olson EN, Smith TF, Brugge JS, Botstein D, Dixon JE, Hunter T, Lefkowitz RJ, Pawson AJ, Sternberg PW, Varmus H, Subramaniam S, Sinkovits RS, Li J, Mock D, Ning Y, Saunders B, Sternweis PC, Hilgemann D, Scheuermann RH, DeCamp D, Hsueh R, Lin KM, Ni Y, Seaman WE, Simpson PC, O’Connell TD, Roach T, Choi S, Eversole-Cire P, Fraser I, Mumby MC, Zhao Y, Brekken D, Shu H, Meyer T, Chandy G, Heo WD, Liou J, O’Rourke N, Verghese M, Mumby SM, Han H, Brown HA, Forrester JS, Ivanova P, Milne SB, Casey PJ, Harden TK, Doyle J, Gray ML, Michnick S, Schmidt MA, Toner M, Tsien RY, Natarajan M, Ranganathan R, Sambrano GR (2002) Overview of the alliance for cellular signaling. Nature 420:703–706

    Article  CAS  PubMed  Google Scholar 

  • Graf T (2002) Differentiation plasticity of hematopoietic cells. Blood 99:3089–3101

    Article  CAS  PubMed  Google Scholar 

  • Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31:60–63

    Article  CAS  PubMed  Google Scholar 

  • Haye A, Dehouck Y, Kwasigroch JM, Bogaerts P, Rooman M (2009) Modeling the temporal evolution of the Drosophila gene expression from DNA microarray time series. Phys Biol 6:16004

    Article  Google Scholar 

  • Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Eichler G, Bar-Yam Y, Ingber DE (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94:128701

    Article  PubMed  Google Scholar 

  • Johnson AD, Poteete AR, Lauer G, Sauer RT, Ackers GK, Ptashne M (1981) Lambda repressor and cro – components of an efficient molecular switch. Nature 294:217–223

    Article  CAS  PubMed  Google Scholar 

  • Jolliffe IT (1986) Principal component analysis. Springer, New York, NY USA

    Book  Google Scholar 

  • Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467

    Article  CAS  PubMed  Google Scholar 

  • Kerr DJ, Workman P (1994) New molecular targets for cancer chemotherapy. CRC Press, Salem, MA, pp 1–194

    Google Scholar 

  • King RD, Whelan KE, Jones FM, Reiser PG, Bryant CH, Muggleton SH, Kell DB, Oliver SG (2004) Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427:247–252

    Article  CAS  PubMed  Google Scholar 

  • Kohonen T (2001) Self-organizing maps. Springer, Berlin

    Book  Google Scholar 

  • Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  CAS  PubMed  Google Scholar 

  • Losick R, Desplan C (2008) Stochasticity and cell fate. Science 320:65–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • MacQueen JB (1967) Proceedings of the 5th Berkeley symposium on Math Statistics Probability 1:281–297

    Google Scholar 

  • Medina KL, Pongubala JM, Reddy KL, Lancki DW, Dekoter R, Kieslinger M, Grosschedl R, Singh H (2004) Assembling a gene regulatory network for specification of the B cell fate. Dev Cell 7:607–617

    Article  CAS  PubMed  Google Scholar 

  • Natsoulis G, El Ghaoui L, Lanckriet GR, Tolley AM, Leroy F, Dunlea S, Eynon BP, Pearson CI, Tugendreich S, Jarnagin K (2005) Classification of a large microarray data set: algorithm comparison and analysis of drug signatures. Genome Res 15:724–736

    Article  CAS  PubMed  Google Scholar 

  • Newman SA, Comper WD (1990) ‘Generic’ physical mechanisms of morphogenesis and pattern formation. Development 110:1–18

    CAS  PubMed  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412

    Article  CAS  PubMed  Google Scholar 

  • Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31: 64–68

    Article  CAS  PubMed  Google Scholar 

  • Slatter JG, Templeton IE, Castle JC, Kulkarni A, Rushmore TH, Richards K, He Y, Dai X, Cheng OJ, Caguyong M, Ulrich RG (2006) Compendium of gene expression profiles comprising a baseline model of the human liver drug metabolism transcriptome. Xenobiotica 36:938–962

    Article  CAS  PubMed  Google Scholar 

  • Sul JY, Wu CW, Zeng F, Jochems J, Lee MT, Kim TK, Peritz T, Buckley P, Cappelleri DJ, Maronski M, Kim M, Kumar V, Meaney D, Kim J, Eberwine J (2009) Transcriptome transfer produces a predictable cellular phenotype. Proc Natl Acad Sci USA 106:7624–7629

    Article  CAS  PubMed  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411

    Article  CAS  PubMed  Google Scholar 

  • Tegner J, Yeung MK, Hasty J, Collins JJ (2003) Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc Natl Acad Sci USA 100:5944–5949

    Article  CAS  PubMed  Google Scholar 

  • Umulis D, O’Connor MB, Othmer HG (2008) Robustness of embryonic spatial patterning in Drosophila melanogaster. Curr Top Dev Biol 81:65–111

    Article  PubMed  Google Scholar 

  • de Visser JA, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC (2003) Perspective: Evolution and detection of genetic robustness. Evolution 57:1959–1972

    PubMed  Google Scholar 

  • Voorma HO (1983) Regulatory steps in the initiation of protein synthesis. Horiz Biochem Biophys 7:139–153

    CAS  PubMed  Google Scholar 

  • Waddington CH (1956) Principles of embryology. Allen and Unwin Ltd., London

    Google Scholar 

  • Weaver W, Shannon CE (1949) The mathematical theory of communication. University of Illinois Press, Urbana, pp 3–28

    Google Scholar 

  • Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams GC (1966) Adaptation and natural selection. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Xiong J, Rayner S, Luo K, Li Y, Chen S (2006) Genome wide prediction of protein function via a generic knowledge discovery approach based on evidence integration. BMC Bioinform 7:268

    Article  Google Scholar 

  • Zhu X, Hart R, Chang MS, Kim JW, Lee SY, Cao YA, Mock D, Ke E, Saunders B, Alexander A, Grossoehme J, Lin KM, Yan Z, Hsueh R, Lee J, Scheuermann RH, Fruman DA, Seaman W, Subramaniam S, Sternweis P, Simon MI, Choi S (2004) Analysis of the major patterns of B cell gene expression changes in response to short-term stimulation with 33 single ligands. J Immunol 173:7141–7149

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin de Bivort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de Bivort, B. (2010). Cellular-Level Gene Regulatory Networks: Their Derivation and Properties. In: Choi, S. (eds) Systems Biology for Signaling Networks. Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5797-9_17

Download citation

Publish with us

Policies and ethics