Skip to main content

Vitamin D in Critical Illness

  • Conference paper
Intensive Care Medicine
  • 2159 Accesses

Abstract

Vitamin D is well known for its regulatory effects on calcium and phosphate homeostasis and its role in the maintenance of bone integrity. Over the past decade, there have been data from biochemical and molecular genetic studies that point to vitamin D having a much wider role than just maintenance of calcium and phosphate metabolism. Vitamin D and its synthetic analogues have been shown to have anticancer properties as well as to modulate the immune system. Recently, vitamin D deficiency has been reported in critically ill patients [1, 2]. However, it is still unclear how this deficiency affects patient outcomes in intensive care. The focus of this chapter is to examine the role of vitamin D in the body, with discussion of its effects on mineral and bone metabolism as well as its pleiotropic effects and the role it may play in the pathophysiology of critical illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nierman DM, Mechanick JI (1998) Bone hyperresorption is prevalent in chronically critically ill patients. Chest 114: 954–955

    Article  Google Scholar 

  2. Van den Berghe G, Van Roosbroeck D, Vanhove P, Wouters PJ, De Pourcq L, Bouillon R (2003) Bone turnover in prolonged critical illness: effect of vitamin D. J Clin Endocrinol Metab 88: 4623–4632

    Article  PubMed  Google Scholar 

  3. Halloran BP, Portale AA, Castro M, Morris RC Jr, Goldsmith RS (1985) Serum concentration of 1,25-dihydroxyvitamin D in the human: diurnal variation. J Clin Endocrinol Metab 60: 1104–1110

    Article  CAS  PubMed  Google Scholar 

  4. Rejnmark L, Lauridsen AL, Vestergaard P, Heickendorff L, Andreasen F, Mosekilde L (2002) Diurnal rhythm of plasma 1,25-dihydroxyvitamin D and vitamin D-binding protein in postmenopausal women: relationship to plasma parathyroid hormone and calcium and phosphate metabolism. Eu J Endocrinol 146: 635–642

    Article  CAS  Google Scholar 

  5. Jurutka PW, Whitfield GK, Mathern DR, et al (2007) Vitamin D receptor: Key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands. J Bone Min Res 22 (Suppl 2): V2–10

    Article  Google Scholar 

  6. Merke J, Hofmann W, Goldschmidt D, Ritz E (1987) Demonstration of 1,25 (OH)2 vitamin D3 receptors and actions in vascular smooth muscle cells in vitro. Calcif Tissue Int 41: 112–114

    Article  CAS  PubMed  Google Scholar 

  7. Bischoff-Ferrari HA, Dawson-Hughes B, Willet WC, et al (2004) Effect of vitamin D on falls: A meta-analysis. JAMA 291: 1999–2006

    Article  CAS  PubMed  Google Scholar 

  8. Merke J, Milde P, Lewicka S, et al (1989) Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25 dihydroxyvitamin D3: studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest 83: 1903–1915

    Article  CAS  PubMed  Google Scholar 

  9. Holick MF (2006) High prevalence of vitamin d inadequacy and implications for health. Mayo Clin Proc 81: 353–373

    Article  CAS  PubMed  Google Scholar 

  10. Tishkoff DX, Nibbelink KA, Holmberg KH, et al (2008) Functional vitamin D receptor (VDR) in the t-tubules of cardiac myocytes: VDR knockout cardiomyocyte contractility. Endocrinology 149: 558–564

    Article  CAS  PubMed  Google Scholar 

  11. Simpson RU, Hershey SH, Nibbelink KA et al (2007) Characterization of heart size and blood pressure in the vitamin D receptor knockout mouse. J Steroid Biochem Mol Biol 103: 521–524

    Article  CAS  PubMed  Google Scholar 

  12. Resnick LM, Muller FB, Laragh JH (1986) Calcium-regulating hormones in essential hypertension: relation to plasma rennin activity and sodium metabolism. Ann Intern Med 105: 649–654

    CAS  PubMed  Google Scholar 

  13. Rigby WF, Denome S, Fanger MW (1987) Regulation of lymphokine production and human T lymphocyte activation by 1,25-dihydroxyvitamin D3; specific inhibition at the level of messenger RNA. J Clin Invest 79: 1659–1664

    Article  CAS  PubMed  Google Scholar 

  14. Watson KE, Abrolat ML, Malone LL, et al (1997) Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation 96: 1755–1760

    CAS  PubMed  Google Scholar 

  15. Wang TJ, Pencina MJ, Booth SL, et al (2008) Vitamin D deficiency and risk of cardiovascular disease. Circulation 117: 503–511

    Article  CAS  PubMed  Google Scholar 

  16. Zittermann A, Schleithoff SS, Gotting C, et al (2009) Calcitriol deficiency and I-year mortality in cardiac transplant recipients. Transplantation 87: 118–124

    Article  CAS  PubMed  Google Scholar 

  17. Cantorna MT, Zhu Y, Froicu M, Wittke A (2004) Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr 80 (suppl): 1717S–1720S

    CAS  PubMed  Google Scholar 

  18. Bemiss CJ, Mahon BD, Henry A, Weaver V, Cantorna MT (2002) IL-2 is one of the targets of 1,25-dihydroxyvitamin D3 in the immune system. Arch Biochem Biophys 402: 249–254

    Article  CAS  PubMed  Google Scholar 

  19. Cantorna MT, Humpal-Winter J, DeLuca HF (2000) In vivo upregulation of interleukin-4 is one mechanism underlying the immunoregulatory effects of 1,25-dihydroxyvitamin D3. Arch Biochem Biophys 377: 135–138

    Article  CAS  PubMed  Google Scholar 

  20. Cohen-Lahav M, Douvdevani A, Chaimovitz C, Shany S (2007) The anti-inflammatory activity of 1,25-dihydroxyvitamin D3 in macrophages. J Steroid Biochem Mol Biol 103: 558–562

    Article  CAS  PubMed  Google Scholar 

  21. Talmor Y, Bernheim J, Klein O, Green J, Rashid G (2008) Calcitriol blunts pro-atherosclerotic parameters through NFKB and p38 in vitro. Eur J Clin Invest 38: 548–554

    Article  CAS  PubMed  Google Scholar 

  22. Deluca HF, Cantorna M (2001) Vitamin D: its role and uses in immunology. FASEB J 15: 2579–2585

    Article  CAS  PubMed  Google Scholar 

  23. Szodoray P, Nakken B, Gaal J, et al (2008) The complex role of vitamin D in autoimmune diseases. Scand J Immunol 68: 261–269

    Article  CAS  PubMed  Google Scholar 

  24. Bamford CR, Sibley WA, Thies C (1983) Seasonal variation of multiple sclerosis exacerbation in Arizona. Neurology 33: 697–701

    CAS  PubMed  Google Scholar 

  25. Munger KL, Zhang SM, O’Reilly E, et al (2004) Vitamin D intake and incidence of multiple scerlosis. Neurology 62: 60–65

    CAS  PubMed  Google Scholar 

  26. Merlino LA, Curtis J, Mikuls TR, Cerhan JR, Criswell LA, Saag KG (2004) Vitamin D intake is inversely associated with rheumatoid arthritis: results from the Iowa Women’s Health Study. Arthritis Rheum 50: 72–77

    Article  CAS  PubMed  Google Scholar 

  27. Hypponen E, Laara E, Reunanen A, Jarvelin MR, Virtanen SM (2001) Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 358: 1500–1503

    Article  CAS  PubMed  Google Scholar 

  28. Cantorna MT, Hayhes CE, DeLuca HF (1998) 1,25-dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J Nutr 128: 68–72

    CAS  PubMed  Google Scholar 

  29. Poon AH, Laprise C, Lemire M, et al (2004) Association of Vitamin D receptor genetic variants with susceptibility to asthma and atopy. Am J Respir Crit Care Med 170: 967–973

    Article  PubMed  Google Scholar 

  30. Schauber J, Dorschner RA, Coda AB, et al (2007) Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 117: 803–811

    Article  CAS  PubMed  Google Scholar 

  31. Lin R, Nagai Y, Sladek R, et al (2002) Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EBI089 signalling on cell proliferation, differentiation and immune system regulation. Mol Endocrinol 16: 1243–1256

    Article  CAS  PubMed  Google Scholar 

  32. Wang TT, Nestel FP, Bourdeau V, et al (2004) Cutting Edge: 1,25-dihydroxyvitamin D 3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173: 2909–2912

    CAS  PubMed  Google Scholar 

  33. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatin agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10: 1033–1043

    Article  CAS  PubMed  Google Scholar 

  34. Saiman L, Tabibi S, Starner TD, et al (2001) Cathelicidin peptides inhibit multiple antibioticresistant pathogens from patients with cystic fibrosis. Antimicrob Agents Chemother 45: 2838–2844

    Article  CAS  PubMed  Google Scholar 

  35. Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock REW (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune response. J Immunol 169: 3883–3891

    CAS  PubMed  Google Scholar 

  36. VanderMeer TJ, Menconi MJ, Zhuang J, et al (1995) Protective effects of a novel 32-amino acid C-terminal fragment of CAP 18 in endotoxemic pigs. Surgery 117: 656–662

    Article  CAS  PubMed  Google Scholar 

  37. Murakami M, Ohtake T, Dorschner RA, Gallo RL (2002) Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res 81: 845–850

    Article  CAS  PubMed  Google Scholar 

  38. Möller S, Laigaard F, Olgaard K, Hemmingsen C (2007) Effect of 1,25-dihydroxy-vitamin D3 in experimental sepsis. Int J Med Sci 4: 190–195

    PubMed  Google Scholar 

  39. Liu PT, Stenger S, Huiying L, et al (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311: 1770–1773

    Article  CAS  PubMed  Google Scholar 

  40. Terblanche M, Yaniv A, Rosenson RS, Smith TS, Hackam DG (2007) Statins and sepsis: multiple modifications at multiple levels. Lancet infect Dis 7: 358–368

    Article  CAS  PubMed  Google Scholar 

  41. Hatzigeorgiou C, Jackson JL (2005) Hydroxymethylglutaryl-coenzyme A reductase inhibitors and osteoporosis: a meta-analysis. Osteoporos Int 16: 990–998

    Article  CAS  PubMed  Google Scholar 

  42. Pérez-Castrillón JL, Vega G, Abad L, et al (2007) Effects of Atorvastatin on vitamin D levels in patients with acute ischemic heart disease. Am J Cardiol 99: 903–905

    Article  PubMed  Google Scholar 

  43. Yavuz B, Ertugrul DT, Cil H, et al (2009) Increased levels of 25 hydroxyvitamin D and 1,25dihydroxyvitamin Dafter rosuvastatin treatment: a novel pleiotropic effect of statins? Cardiovase Drugs Ther 23: 295–299

    Article  CAS  Google Scholar 

  44. Kong J, Zhang Z, Musch MW, et al (2008) Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol 294: G208–216

    Article  Google Scholar 

  45. Chatterjee M (2001) Vitamin D and genomic stability. Mutat Res 475: 69–87

    CAS  PubMed  Google Scholar 

  46. Chabas JF, Alluin O, Rao G, et al (2008) Vitamin D2 potentiated axon regeneration. J Neurotrauma 25: 1247–1256

    Article  PubMed  Google Scholar 

  47. Atif F, Sayeed I, Ishrat T, Stein DG (2009) Progesterone with vitamin D affords better neuroprotection against excitotoxicity in cultured cortical neurons than progesterone alone. Mol Med 15: 321–327

    Article  Google Scholar 

  48. Lee P, Eisman JA, Center JR (2009) Vitamin D deficiency in critically ill patients. N Engl J Med 360: 1912–1914

    Article  CAS  PubMed  Google Scholar 

  49. Melamed ML, Michos ED, Post W, Astor B (2008) 25-hydroxyvitamin D levels and the risk of mortality in the general population. Arch Intern Med 168: 1629–1637

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science + Business Media Inc.

About this paper

Cite this paper

Krishnan, A., Ochola, J., Venkatesh, B. (2010). Vitamin D in Critical Illness. In: Vincent, JL. (eds) Intensive Care Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5562-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5562-3_26

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5561-6

  • Online ISBN: 978-1-4419-5562-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics