Skip to main content

The Role of Attention in Shaping Visual Perceptual Processes

  • Chapter
  • First Online:
Perception-Action Cycle

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS))

  • 1513 Accesses

Abstract

It has been known now for over 20 years that an optimal solution to a basic vision problem such as visual search, which is robust enough to apply to any possible image or target, is unattainable because the problem of visual search is provably intractable (“Tsotsos, The complexity of perceptual search tasks, Proceedings of the International Joint Conference on Artificial Intelligence, 1989,” “Rensink, A new proof of the NP-completeness of visual match, Technical Report 89–22, University of British Columbia, 1989”). That the brain seems to solve it in an apparently effortless manner then poses a mystery. Either the brain is performing in a manner that cannot be captured computationally, or it is not solving that same generic visual search problem. The first option has been shown to not be the case (“Tsotsos and Bruce, Scholarpedia, 3(12), 6545, 2008”). As a result, this chapter will focus on the second possibility. There are two elements required to deal with this. The first is to show how the nature of the problem solved by the brain is fundamentally different from the generic one, and second to show how the brain might deal with those differences. The result is a biologically plausible and computationally well-founded account of how attentional mechanisms dynamically shape perceptual processes to achieve this seemingly effortless capacity that humans – and perhaps most seeing animals – possess.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahissar, M., Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning, Nature, 387, 401–406.

    Article  CAS  PubMed  Google Scholar 

  • Barrow, H., Tenenbaum, J. (1981). Computational vision, Proc. IEEE, 69(5), 572–595.

    Article  Google Scholar 

  • Boehler, C.N., Tsotsos, J.K., Schoenfeld, M., Heinze, H.-J., Hopf, J.-M. (2009). The center-surround profile of the focus of attention arises from recurrent processing in visual cortex, Cereb. Cortex, 19, 982–991.

    Article  CAS  PubMed  Google Scholar 

  • Bullier, J. (2001). Integrated model of visual processing, Brain Res. Rev., 36, 96–107.

    CAS  Google Scholar 

  • Culhane, S., Tsotsos, J.K. (1992). An attentional prototype for early vision. In: Sandini, G. (ed.), Computer Vision—ECCV’92. Second European Conference on Computer Vision Santa Margherita Ligure, Italy, May 19–22, 1992. Lect. Notes in Comput. Sci. 588, pp. 551–560, Springer-Verlag.

    Google Scholar 

  • Dickinson, S., Leonardis, A., Schiele, B., Tarr, M. (2009). Object categorization, Cambridge University Press, New York.

    Book  Google Scholar 

  • DiLollo, V. (2010). Iterative reentrant processing: a conceptual framework for perception and cognition. In: Coltheart, V. (ed.), Tutorials in Visual Cognition, Psychology Press, New York.

    Google Scholar 

  • Duncan, J., Ward, J., Shapiro, K. (1994). Direct measurement of attentional dwell time in human vision, Nature, 369, 313–315.

    Article  CAS  PubMed  Google Scholar 

  • Evans, K., Treisman, A. (2005). Perception of objects in natural scenes: is it really attention free? J. Exp. Psychol. Hum. Percept. Perform., 31–6, 1476–1492.

    Google Scholar 

  • Fukushima, K. (1986). A neural network model for selective attention in visual pattern recognition, Biol. Cybern., 55(1), 5–15.

    Article  CAS  PubMed  Google Scholar 

  • Garey, M., Johnson, D. (1979). Computers and intractability: A guide to the theory of NP-completeness, Freeman, San Francisco.

    Google Scholar 

  • Ghose, G., Maunsell, J. (1999). Specialized representations in visual cortex: a role for binding? Neuron, 24, 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Grill-Spector, K., Kanwisher, N. (2005). Visual recognition: as soon as you know it is there, you know what it is, Psychol. Sci., 16, 152–160.

    Article  PubMed  Google Scholar 

  • Gueye, L., Legalett, E., Viallet, F., Trouche, E., Farnarier, G. (2002). Spatial orienting of attention: a study of reaction time during pointing movement, Neurophysiol. Clin., 32, 361–368.

    Article  CAS  PubMed  Google Scholar 

  • Lamme, V., Roelfsema, P. (2000). The distinct modes of vision offered by feedforward and recurrent processing, TINS, 23(11), 571–579.

    CAS  PubMed  Google Scholar 

  • Lünenburger, L., Hoffman, K.-P. (2003). Arm movement and gap as factors influencing the reaction time of the second saccade in a double-step task, Eur. J. Neurosci., 17, 2481–2491.

    Article  PubMed  Google Scholar 

  • Macmillan, N.A., Creelman, C.D. (2005). Detection theory: a user’s guide, Routledge.

    Google Scholar 

  • Marr, D. (1982). Vision: a computational investigation into the human representation and processing of visual information. Henry Holt and Co., New York.

    Google Scholar 

  • Milner, P.M. (1974). A model for visual shape recognition. Psychol. Rev., 81–86, 521–535.

    Article  Google Scholar 

  • Mehta, A., Ulbert, I., Schroeder, C. (2000). Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cereb. Cortex, 10(4), 343–358.

    Article  CAS  PubMed  Google Scholar 

  • Müller, H., Rabbitt, P. (1989). Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J. Exp. Psychol. Hum. Percept. Perform., 15, 315–330.

    Article  PubMed  Google Scholar 

  • Posner, M.I., Nissen, M., Ogden, W. (1978). Attended and unattended processing modes: the role of set for spatial locations. In: Pick Saltzmann (ed.), Modes of perceiving and processing information. Erlbaum, Hillsdale, NJ, pp. 137–158.

    Google Scholar 

  • Rensink, R. (1989). A new proof of the NP-Completeness of Visual Match, Technical Report 89–22, Department of Computer Science, University of British Columbia.

    Google Scholar 

  • Reynolds, J., Desimone, R. (1999). The role of neural mechanisms of attention in solving the binding problem, Neuron, 24, 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Riesenhuber, M., Pogio, T. (1999). Are cortical models really bound by the “Binding Problem”? Neuron, 24, 87–93.

    Article  CAS  PubMed  Google Scholar 

  • Roskies, A. (1999). The binding problem–introduction, Neuron, 24, 7–9.

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt, F. (1961). Principles of neurodynamics: perceptions and the theory of brain mechanisms. Spartan Books.

    Google Scholar 

  • Rodriguez-Sanchez, A.J., Simine, E., Tsotsos, J.K. (2007). Attention and visual search, Int. J. Neural Syst., 17(4), 275–88.

    Article  PubMed  Google Scholar 

  • Rothenstein, A., Rodriguez-Sanchez, A., Simine, E., Tsotsos, J.K. (2008). Visual feature binding within the selective tuning attention framework, Int. J. Pattern Recognit. Artif. Intell., Special Issue on Brain, Vision and Artificial Intelligence, 861–881.

    Google Scholar 

  • Thorpe, S., Fize, D., Marlot, C. (1996). Speed of processing in the human visual system, Nature, 381, 520–522.

    Article  CAS  PubMed  Google Scholar 

  • Treisman, A. (1999). Solutions to the binding problem: progress through controversy and convergence, Neuron, 24(1), 105–125.

    Article  CAS  PubMed  Google Scholar 

  • Treisman, A.M., Gelade, G. (1980). A feature-integration theory of attention, Cogn. Psychol., 12(1), 97–136.

    Article  CAS  PubMed  Google Scholar 

  • Tsotsos, J.K., Rodriguez-Sanchez, A., Rothenstein, A., Simine, E. (2008). Different binding strategies for the different stages of visual recognition, Brain Res., 1225, 119–132.

    Article  CAS  PubMed  Google Scholar 

  • Tsotsos, J.K. (1987). A ‘Complexity Level’ analysis of vision, Proceedings of 1st International Conference on Computer Vision, London, UK.

    Google Scholar 

  • Tsotsos, J.K. (1988). A ‘Complexity Level’ analysis of immediate vision, Int. J. Comput. Vision, Marr Prize Special Issue, 2(1), 303–320.

    Google Scholar 

  • Tsotsos, J.K. (1989). The complexity of perceptual search tasks, Proceedings of the International Joint Conference on Artificial Intelligence, Detroit, pp. 1571–1577.

    Google Scholar 

  • Tsotsos, J.K. (1990). Analyzing vision at the complexity level, Behav. Brain Sci., 13–3, 423–445.

    Google Scholar 

  • Tsotsos, J.K. (1991a). Localizing Stimuli in a Sensory Field Using an Inhibitory Attentional Beam, October 1991, RBCV-TR-91–37.

    Google Scholar 

  • Tsotsos, J.K. (1991b). Is complexity theory appropriate for analysing biological systems? Behav. Brain Sci., 14–4, 770–773.

    Google Scholar 

  • Tsotsos, J.K. (1993). An inhibitory beam for attentional selection. In: Harris, L., Jenkin, M. (Eds.), Spatial vision in humans and robots. Cambridge University Press, pp. 313–331.

    Google Scholar 

  • Tsotsos, J.K., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F. (1995). Modeling visual attention via selective tuning, Artif. Intell., 78(1–2), 507–547.

    Article  Google Scholar 

  • Tsotsos, J.K., Liu, Y., Martinez-Trujillo, J., Pomplun, M., Simine, E., Zhou, K. (2005). Attending to visual motion, Comput. Vis. Image Underst., 100(1–2), 3–40.

    Article  Google Scholar 

  • Tsotsos, J.K., Bruce, N.D.B. (2008). Computational foundations for attentive processes, Scholarpedia, 3(12), 6545.

    Article  Google Scholar 

  • Tsotsos, J.K. (2011). A computational perspective on visual attention, MIT, Cambridge, MA.

    Google Scholar 

  • VanRullen, R., Carlson, T., Cavanaugh, P. (2007). The blinking spotlight of attention, Proc. Natl. Acad. Sci. USA, 104–49, 19204–19209.

    Article  Google Scholar 

  • Wolfe, J.M. (1998). Visual search. In: Pashler, H. (Ed.), Attention. Psychology Press, Hove, UK, pp. 13–74.

    Google Scholar 

  • Yarbus, A.L. (1967). Eye movements and vision. Plenum, New York.

    Google Scholar 

  • Zucker, S.W., Rosenfeld, A., Davis, L.S. (1975). General-purpose models: expectations about the unexpected, Proceedings of the 4th International Joint Conference on Artificial Intelligence, Tblisi, USSR pp. 716–721.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Tsotsos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tsotsos, J.K., Rothenstein, A.L. (2011). The Role of Attention in Shaping Visual Perceptual Processes. In: Cutsuridis, V., Hussain, A., Taylor, J. (eds) Perception-Action Cycle. Springer Series in Cognitive and Neural Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1452-1_1

Download citation

Publish with us

Policies and ethics