Skip to main content

In What Manner Do Quadrupedal Primates Walk on Two Legs? Preliminary Results on Olive Baboons (Papio anubis)

  • Chapter
  • First Online:
Primate Locomotion

Abstract

Olive baboons (Papio anubis) are typically described as highly ­specialized for quadrupedal locomotion. Yet, they regularly and spontaneously walk bipedally as well. In what manner do they do this, when compared to other primates and humans? This question is of interest with regard to the origin of bipedalism in hominids. As a first step in understanding bipedal locomotion in baboons, we here present novel kinematic data, achieved using a custom-built setup that allows to measure individual locomotor parameters in a population of 55–60 captive olive baboons housed at the Primatology Station of the National Centre for Scientific Research (CNRS, France) using a high-speed digital recording system (100 fps) and a walkway (Podium). Within our population, we observed bipedality mainly in infant and subadult individuals: we present the sagittal motion parameters that we collected on a sample of 10 males and females of ages between 6 months and 5.5 years. As far as angular trajectories of the trunk and the lower limb joints are concerned, olive baboons walk bipedally in a rather stereotyped, compliant manner with a semiplantigrade stance phase, a trunk that is slightly tilted forward and immobile forelimbs kept forward in a parasagittal plane. Some small variations can be depicted, especially in the younger individuals of the sample. Among other “quadrupedal” primates of which the bipedal locomotion has been kinematically analyzed, the kinematics of bipedal walking of Papio anubis more closely resembles those described in Macaca fuscata. In the broader framework of our study, numerous transversal and longitudinal analyses are in progress on data as varied as noninvasive anatomical investigations, kinematics, kinetics, and paedobarography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts P, Van Damme R, Van Elsacker L, Duchene V (2000) Spatio–temporal gait characteristics of the hind-limb cycles during voluntary bipedal and quadrupedal walking in Bonobos (Pan paniscus). Am J Phys Anthropol 111:503–517.

    Article  PubMed  CAS  Google Scholar 

  • Aiello LC, Dean C (1990) An Introduction to Human Evolutionary Anatomy. Academic Press, London.

    Google Scholar 

  • Alexander RM (1984) Stride length and speed for adults, children, and fossil hominids. Am J Phys Anthropol 63:23–27.

    Article  PubMed  CAS  Google Scholar 

  • Alexander RM (2002) Energetics and optimization of human walking and running: the 2000 Raymond Pearl Memorial lecture. Am J Hum Biol 14:641–648.

    Article  Google Scholar 

  • Alexander RM (2004) Bipedal animals, and their differences from humans. J Anat 204(5):321–330.

    Article  PubMed  Google Scholar 

  • Berillon G, Daver G, D’Août K, Nicolas G, de la Villetanet B, Multon F, Digrandi G, Dubreuil G (2010) Bipedal vs. quadrupedal hindlimb and foot kinematics in a captive sample of olive baboons (Papio anubis): setup and preliminary results. Int J Primatol 31(2):159–180.

    Google Scholar 

  • Crompton RH, Li Y, Alexander RM, Wang WJ, Günther MM (1996) Segment inertial properties of primates: new techniques for laboratory and field studies of locomotion. Am J Phys Anthropol 99:547–570.

    Article  PubMed  CAS  Google Scholar 

  • Crompton RH, Li Y, Wang W, Günther MM, Savage R (1998) The mechanical effectiveness of erect and “bent-hip, bent-knee” bipedal walking in Australopithecus afarensis. J Hum Evol 35(1):55–74.

    Article  PubMed  CAS  Google Scholar 

  • Crompton RH, Vereecke EE, Thorpe SKS (2008) Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. J Anat 212:501–54.

    Article  PubMed  CAS  Google Scholar 

  • Danion F, Varraine E, Bonnard M, Pailhous J (2003) Stride variability in human gait: the effect of stride frequency and stride length. Gait Posture 18(1):69–77.

    Article  PubMed  CAS  Google Scholar 

  • D’Août K, Aerts P, De Clercq D, De Meester K, Van Elsacker L (2002) Segment and joint angles of hindlimb during bipedal and quadrupedal walking of the bonobo (Pan paniscus). Am J Phys Anthropol 119(1):37–51.

    Article  PubMed  Google Scholar 

  • D’Août K, Aerts P, De Clercq D, Schoonaert K, Vereecke E, Van Elsacker L (2001) Studying bonobo (Pan paniscus) locomotion using an integrated setup in a zoo environment: preliminary results. Primatologie 4:191–206.

    Google Scholar 

  • Doran DM (1993) Comparative locomotor behavior of chimpanzees and bonobos: the influence of morphology on locomotion. Am J Phys Anthropol 91:83–98.

    Article  PubMed  CAS  Google Scholar 

  • Doran DM (1997) Ontogeny of locomotion in mountain gorillas and chimpanzees. J Hum Evol 32(4):323–344.

    Article  PubMed  CAS  Google Scholar 

  • Elftman H (1944) The bipedal walking of the chimpanzee. J Mammal 25:67–71.

    Article  Google Scholar 

  • Elftman H, Manter J (1935a) Chimpanzee and human feet in bipedal walking. Am J Phys Anthropol 20:69–79.

    Article  Google Scholar 

  • Elftman H, Manter J (1935b) The evolution of the human foot, with especial reference to the joints. J Anat 70:56–70.

    PubMed  CAS  Google Scholar 

  • Fleagle JG (1988) Primate Adaptation and Evolution. Academic Press, New York.

    Google Scholar 

  • Gebo DL (1992) Plantigrady and foot adaptation in African Apes: implications for hominids origins. Am J Phys Anthropol 89:29–58.

    Article  PubMed  CAS  Google Scholar 

  • Grimshaw PN, Marques–Bruna P, Salo A, Messenger N (1998) The 3-dimensional kinematics of the walking gait cycle of children aged between 10 and 24 months: cross sectional and repeated measures. Gait Posture 7(1):7–15.

    Article  PubMed  Google Scholar 

  • Groves CP (2001) Primate Taxonomy. Smithsonian Institute Press, Washington.

    Google Scholar 

  • Hallemans A, Clercq DD, Aerts P (2006) Changes in 3D joint dynamics during the first 5 months after the onset of independent walking: a longitudinal follow-up study. Gait Posture 24(3):270–279.

    Article  PubMed  Google Scholar 

  • Hirasaki E, Ogihara N, Hamada Y, Kumakura H, Nakatsukasa M (2004) Do highly trained monkeys walk like humans? A kinematic study of bipedal locomotion in bipedally trained Japanese macaques. J Hum Evol 46(6):739–750.

    Article  PubMed  Google Scholar 

  • Hunt KD (1989) Positional behaviour in Pan troglodytes at the Mahale Mountains and Gombe Stream National Parks. PhD dissertation, University of Michigan.

    Google Scholar 

  • Inman VT, Ralston HJ, Todd F (1981) Human Walking. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Ishida H, Kimura T, Okada M (1974) Patterns of bipedal walking in anthropoid primates. In: Kondo S, Kawai M, Ehara A, Kawamura S (eds.), Proceedings from the symposia of the 5th congress of the International Primatological Society, pp. 287–301. Japan Science Press, Tokyo.

    Google Scholar 

  • Isler K, Payne RC, Günther MM, Thorpe SKS, Li Y, Savage R, Crompton RH (2006) Inertial properties of hominoid limb segments. J Anat 209(2):201–218.

    Article  PubMed  Google Scholar 

  • Jenkins FA (1972) Chimpanzee bipedalism: Cineradiographic analysis and implications for the evolution of gait. Science 178(4063):877–879.

    Article  PubMed  Google Scholar 

  • Kimura T (1985) Bipedal and quadrupedal walking of primates: comparative dynamics. In: Kondo S (ed), Primate Morphophysiology, Locomotor Analyses and Human Bipedalism, pp. 81–104. University of Tokyo Press, Tokyo.

    Google Scholar 

  • Kimura T (1990) Voluntary bipedal walking in infant chimpanzees. In: Jouffroy FK, Stack MH

    Google Scholar 

  • Niemitz C (eds), Gravity, Posture and Locomotion in Primates, pp. 237–251. Il Sedicessimo, Firenze.

    Google Scholar 

  • Kimura T (1996) Centre of gravity of the body during the ontogeny of chimpanzee bipedal ­walking. Folia Primatol 66(1-4):126–136.

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Okada M, Ishida H (1979) Kinesiological characteristics of primate walking: its significance in human walking. In: Morbeck ME, Preuschoft H, Gomberg N (eds), Environment, Behavior, and Morphology: Dynamic Interactions in Primates, pp. 297–311. Gustav Fischer, New York.

    Google Scholar 

  • Kimura T, Okada M, Yamazaki N, Ishida H (1983) Speed of the bipedal gaits of man and nonhuman primates. Ann Sci Nat Zool Paris 5:145–158.

    Google Scholar 

  • Kramer PA, Eck GG (2000) Locomotor energetics and leg length in hominid bipedality. J Hum Evol 38(5):651–666.

    Article  PubMed  CAS  Google Scholar 

  • Lewis OJ (1989) Functional Morphology of the Evolving Hand and Foot. Clarendon Press, Oxford.

    Google Scholar 

  • Li Y, Crompton RH, Alexander RM, Gunther MM, Wang WJ (1996) Characteristics of ground reaction forces in normal and chimpanzee-like bipedal walking by humans. Folia Primatol 66(1-4):137–159.

    Article  PubMed  CAS  Google Scholar 

  • Meldrum DJ (1991) Kinematics of the Cercopithecine foot on arboreal and terrestrial substrates with implications for the interpretation of Hominid terrestrial adaptations. Am J Phys Anthropol 84:273–289.

    Article  PubMed  CAS  Google Scholar 

  • Nagano A, Umberger BR, Marzke MW, Gerritsen KGM (2005) Neuromusculoskeletal computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L. 288-1). Am J Phys Anthropol 126(1):2–13.

    Article  PubMed  Google Scholar 

  • Nakatsukasa M, Hayama S, Preuschoft H (1995) Postcranial skeleton of a Macaque trained for bipedal standing and walking and implications for functional adaptation. Folia Primatol 64:1–29.

    Article  PubMed  CAS  Google Scholar 

  • Nakatsukasa M, Ogihara N, Hamada Y, Goto Y, Yamada M, Hirakawa T, Hirasaki E (2004) Energetic costs of bipedal and quadrupedal walking in Japanese macaques. Am J Phys Anthropol 124(3):248–256.

    Article  PubMed  CAS  Google Scholar 

  • Nakatsukasa M, Hirasaki E, Ogihara N (2006) Energy expenditure of bipedal walking is higher than that of quadrupedal walking in Japanese macaques. Am J Phys Anthropol 131(1):33–37.

    Article  PubMed  CAS  Google Scholar 

  • Ogihara N, Usui H, Hirasaki E, Hamada Y, Nakatsukasa M (2005) Kinematic analysis of bipedal locomotion of a Japanese macaque that lost its forearms due to congenital malformation. Primates 46(1):11–19.

    PubMed  Google Scholar 

  • Ogihara N, Hirasaki E, Kumakura H, Nakatsukasa M (2007) Ground-reaction-force profiles of bipedal walking in bipedally trained Japanese monkeys. J Hum Evol 53(3):302–308.

    Article  PubMed  Google Scholar 

  • Okada M (1985) Primate bipedal walking: comparative kinematics. In: Kondo S (ed), Primate Morphophysiology, Locomotor Analyses and Human Bipedalism, pp. 47–58. Tokyo University Press, Tokyo.

    Google Scholar 

  • Payne RC, Crompton RH, Isler K, Savage R, Vereecke EE, Günther MM, Thorpe DE, D’Août K (2006) Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture. J Anat 208(6):709–724.

    PubMed  CAS  Google Scholar 

  • Raichlen DA, Pontzer H, Sockol MD (2008) The Laetoli footprints and early hominin locomotor kinematics. J Hum Evol 54:112–117.

    Article  PubMed  Google Scholar 

  • Rose MD (1973) Quadrupedalism in primates. Primates 14:337–357.

    Article  Google Scholar 

  • Rose MD (1976) Bipedal behavior of olive baboons (Papio anubis) and its relevance to an understanding of the evolution of human bipedalism. Am J Phys Anthropol 44:247–262.

    Article  PubMed  CAS  Google Scholar 

  • Rose MD (1977) Positional behaviour of olive baboons (Papio anubis) and its relationship to maintenance and social activities. Primates 18:59–116.

    Article  Google Scholar 

  • Schmitt D, Larson SG (1995) Heel contact as a function of substrate type and speed in Primates. Am J Phys Anthropol 96:39–50.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt DO (2003) Insights into the evolution of human bipedalism from experimental studies of humans and other primates. J Exp Biol 206:1437–1448.

    Article  PubMed  Google Scholar 

  • Schoonaert K, D’Août K, Aerts P (2007) Morphometrics and inertial properties in the body segments of chimpanzees (Pan troglodytes). J Anat 210(5):518–531.

    Article  PubMed  Google Scholar 

  • Sellers WI, Dennis LA, Crompton RH (2003) Predicting the metabolic energy costs of bipedalism using evolutionary robotics. J Exp Biol 206:1127–1136.

    Article  PubMed  CAS  Google Scholar 

  • Sellers WI, Dennis LA, Wang WJ, Crompton RH (2004) Evaluating alternative gait strategies using evolutionary robotics. J Anat 204(5):343–351.

    Article  PubMed  Google Scholar 

  • Sellers WI, Cain GM, Wang W, Crompton RH (2005) Stride lengths, speed and energy costs in walking of Australopithecus afarensis: using evolutionary robotics to predict locomotion of early human ancestors. J R Soc Interface: 1–11.

    Google Scholar 

  • Tardieu C, Aurengo A, Tardieu B (1993) New method of the three-dimensional analysis of bipedal locomotion for the study of displacements of the body and body-parts centers of mass in man and non-human primates: evolutionary framework. Am J Phys Anthropol 90:455–476.

    Article  PubMed  CAS  Google Scholar 

  • Vereecke EE, D’Août K, De Clercq D, Van Elsacker L, Aerts P (2003) Dynamic plantar pressure distribution during terrestrial locomotion of bonobos (Pan paniscus). Am J Phys Anthropol 120(4):373–383.

    Article  PubMed  Google Scholar 

  • Vereecke EE, D’Août K, De Clercq D, Van Elsacker L, Aerts P (2004) The relationship between speed, contact time and peak plantar pressure in terrestrial walking of bonobos. Folia Primatol 75(4):266–278.

    Article  PubMed  Google Scholar 

  • Vereecke EE, D’Août K, Van Elsacker L, De Clercq D, Aerts P (2005) Functional analysis of the gibbon foot during terrestrial bipedal walking: plantar pressure distributions and three-dimensional ground reaction forces. Am J Phys Anthropol 128(3):659–669.

    Article  PubMed  Google Scholar 

  • Vereecke EE, D’Août K, Aerts P (2006a) Locomotor versatility in the white-handed gibbon (Hylobates lar): a spatiotemporal analysis of the bipedal, tripedal, and quadrupedal gaits. J Hum Evol 50(5):552–567.

    Article  PubMed  Google Scholar 

  • Vereecke EE, D’Août K, Aerts P (2006b) Speed modulation in hylobatid bipedalism: A kinematic analysis. J Hum Evol 51(5):513–526.

    Article  PubMed  Google Scholar 

  • Vereecke EE, Aerts P (2008) The mechanics of the gibbon foot and its potential for elastic energy storage during bipedalism. J Exp Biol 211 (23):3661-3670.

    Article  PubMed  Google Scholar 

  • Wang WJ, Crompton R, Li Y, Gunther MM (2003) Energy transformation during erect and “bent-hip, bent-knee” walking by humans with implications for the evolution of bipedalism. J Hum Evol 44(2):563–579.

    Article  PubMed  CAS  Google Scholar 

  • Winter DA (1991) The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd ed. University of Waterloo Press, Waterloo Biomechanics.

    Google Scholar 

  • Wrangham RW (1980) Bipedal locomotion as a feeding adaptation in Gelada Baboons, and its complicartions for hominid evolution. J Hum Evol 9:329–331.

    Article  Google Scholar 

  • Yaguramaki N, Kimura T (2002) Acquirement of stability and mobility in infant gait. Gait Posture 16(1):69–77.

    Article  PubMed  Google Scholar 

  • Yamazaki N, Ishida H, Kimura T, Okada M (1979) Biomechanical analysis of the primate bipedal walking by computer simulation. J Hum Evol 8:337–349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Berillon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Berillon, G. et al. (2011). In What Manner Do Quadrupedal Primates Walk on Two Legs? Preliminary Results on Olive Baboons (Papio anubis). In: D'Août, K., Vereecke, E. (eds) Primate Locomotion. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1420-0_5

Download citation

Publish with us

Policies and ethics