Skip to main content

Pharmacological Manipulation of Rhodopsin Retinitis Pigmentosa

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Abstract

Mutations in rhodopsin cause autosomal dominant retinitis pigmentosa. The majority of these mutations (class II) lead to protein misfolding. The misfolded protein is retained in the ER then retrotranslocated into the cytoplasm for degradation by the proteasome. If degradation fails, the protein can aggregate to form intracellular inclusions. In addition, the mutant rod opsin exerts a dominant negative effect on the wild-type protein. Here, we review these pathways and how different drug treatments can affect mutant rod opsin. Interestingly, drugs targeted at general protein stability (kosmotropes) or improving the cellular folding and degradation machinery (molecular chaperone inducers and autophagy induction) reduced P23H rod opsin aggregation and inclusion formation together with associated caspase activation and cell death, but did not enhance mutant protein processing or reduce the dominant negative effects. In contrast, pharmacological chaperones (retinoids) enhanced P23H folding and reduced the dominant negative effects, as well as reducing the other gains of function. Therefore, targeting the toxic gain of function did not require improved folding, whereas reducing the dominant negative effects required improved folding. These studies suggest that some forms of rhodopsin retinitis pigmentosa could be treated by targeting protein folding and/or reducing protein aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Back JF, Oakenfull D, Smith MB (1979) Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry 18:5191–5196

    Article  CAS  PubMed  Google Scholar 

  • Chapple JP, Grayson C, Hardcastle AJ et al (2001) Unfolding retinal dystrophies: a role for molecular chaperones?. Trends Mol Med 7:414–421

    Article  CAS  PubMed  Google Scholar 

  • Cummings CJ, Mancini MA, Antalffy B et al (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19:148–154

    Article  CAS  PubMed  Google Scholar 

  • Howarth JL, Kelly S, Keasey MP et al (2007) Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. Mol Ther 15:1100–1105

    CAS  PubMed  Google Scholar 

  • Illing ME, Rajan RS, Bence NF et al (2002) A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J Biol Chem 277:34150–34160

    Article  CAS  PubMed  Google Scholar 

  • Kaushal S (2006) Effect of rapamycin on the fate of P23H opsin associated with retinitis pigmentosa (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 104:517–529

    Google Scholar 

  • Kosmaoglou M, Cheetham ME (2008) Calnexin is not essential for mammalian rod opsin biogenesis. Mol Vis 14:2466–2474

    CAS  PubMed  Google Scholar 

  • Kosmaoglou M, Schwarz N, Bett JS et al (2008) Molecular chaperones and photoreceptor function. Prog Ret Eye Res 27:434–449

    Article  CAS  Google Scholar 

  • Li T, Sandberg MA, Pawlyk BS et al (1998) Effect of vitamin A supplementation on rhodopsin mutants threonine17methionine and proline347serine in transgenic mice and in cell cultures. Proc Natl Acad Sci USA 95:11933–11938

    Article  CAS  PubMed  Google Scholar 

  • Lin JH, Li H, Yasumura D et al (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–949

    Article  CAS  PubMed  Google Scholar 

  • Mendes HF, Cheetham ME (2008) Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa. Hum Mol Genet 17:3043–3054

    Article  CAS  PubMed  Google Scholar 

  • Mendes HF, van der Spuy J, Chapple JP et al (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11:177–185

    Article  CAS  PubMed  Google Scholar 

  • Noorwez SM, Kuksa V, Imanishi Y et al (2003) Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa. J Biol Chem 278:14442–14450

    Article  CAS  PubMed  Google Scholar 

  • Noorwez SM, Malhotra R, McDowell JH et al (2004) Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H. J Biol Chem 279:16278–16284

    Article  CAS  PubMed  Google Scholar 

  • Rajan RS, Kopito RR (2005) Suppression of wild-type rhodopsin maturation by mutants linked to autosomal dominant retinitis pigmentosa. J Biol Chem 280:1284–1291

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  CAS  PubMed  Google Scholar 

  • Saliba RS, Munro PM, Luthert PJ et al (2002) The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci 115:2907–2918

    CAS  PubMed  Google Scholar 

  • Sarkar S, Davies JE, Huang Z et al (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282:5641–5652

    Article  CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    Article  CAS  PubMed  Google Scholar 

  • Sittler A, Lurz R, Lueder G et al (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10:1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Sung CH, Schneider BG, Agarwal N et al (1991) Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA 88:8840–8844

    Article  CAS  PubMed  Google Scholar 

  • Vembar SS, Brodsky JL (2008) One step at a time: endoplasmic reticulum-associated degradation. Nature 9:944

    CAS  Google Scholar 

  • Wenzel A, Grimm C, Samardzija M et al (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 24:275–306

    Article  CAS  PubMed  Google Scholar 

  • Westhoff B, Chapple JP, van der Spuy J et al (2005) HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr Biol. 15:1058–1064

    Article  CAS  PubMed  Google Scholar 

  • Zeitlin PL, Diener-West M, Rubenstein RC et al (2002) Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate. Mol Ther 6:119–126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the British Retinitis Pigmentosa Society (BRPS), Fight for Sight, the Daphne Jackson Trust and National Institute for Health Research (NIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Cheetham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mendes, H.F., Zaccarini, R., Cheetham, M.E. (2010). Pharmacological Manipulation of Rhodopsin Retinitis Pigmentosa. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_36

Download citation

Publish with us

Policies and ethics