Skip to main content

Minimal Thinness and the Beurling Minimum Principle

  • Chapter
  • First Online:
Around the Research of Vladimir Maz'ya III

Part of the book series: International Mathematical Series ((IMAT,volume 13))

  • 650 Accesses

Abstract

Every domain with the Green function has the Martin boundary and every positive harmonic function on the domain is represented as the integral over the Martin boundary. The classical Fatou theorem concerning nontangential limits of harmonic functions is extended to this general context by using the notion of the minimal thinnes. The identification of the Martin boundaries for specific domains is an interesting problem and has attracted many mathematicians. From smooth domains to nonsmooth domains the study of the Martin boundary has been expanded. It is now known that the Martin boundary of a uniform domain is homeomorphic to the Euclidean boundary. On the other hand, the study of the minimal thinnes has been exploited comparatively a little. The minimal thinnes of an NTA domain was studied by the author with the aid of the quasiadditivity of capacity, the Hardy inequality, and the Beurling minimum principle. Maz’ya was one of the first mathematicians who recognized the significance of the Beurling minimum principle. This article illustrates the backgrounds of the characterization of the minimal thinness and gives a characterization of the minimal thinness of a uniform domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aikawa, H.: On the minimal thinness in a Lipschitz domain. Analysis 5, no. 4, 347–382 (1985)

    MATH  MathSciNet  Google Scholar 

  2. Aikawa, H.: Quasiadditivity of Riesz capacity. Math. Scand. 69, no. 1, 15–30 (1991)

    MATH  MathSciNet  Google Scholar 

  3. Aikawa, H.: Quasiadditivity of capacity and minimal thinness. Ann. Acad. Sci. Fenn. Ser. A I Math. 18, no. 1, 65–75 (1993)

    MATH  MathSciNet  Google Scholar 

  4. Aikawa, H.: Boundary Harnack principle and Martin boundary for a uniform domain. J. Math. Soc. Japan 53. no. 1, 119–145 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ancona, A.: Démonstration d'une conjecture sur la capacité et l'effilement. C. R. Acad. Sci. Paris Sér. I Math. 297, no. 7, 393–395 (1983)

    MATH  MathSciNet  Google Scholar 

  6. Ancona, A.: Sur une conjecture concernant la capacité et l'effilement. In: Seminar on Harmonic Analysis, 1983–1984, Publ. Math. Orsay Vol. 85, pp. 56–91. Univ. Paris XI, Orsay (1985)

    Google Scholar 

  7. Ancona, A.: On strong barriers and an inequality of Hardy for domains in R n. J. London Math. Soc. (2) 34, no. 2, 274–290 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ancona, A.: Positive harmonic functions and hyperbolicity. In: Potential Theory — Surveys and Problems (Prague, 1987). Lect. Notes Math. 1344, 1–23 (1988)

    Article  MathSciNet  Google Scholar 

  9. Armitagem, D.H., Kuran, Ü.: On positive harmonic majorization of y in R n × (0, +∞). J. London Math. Soc. (2) 3, 733–741 (1971)

    Article  MathSciNet  Google Scholar 

  10. Armitagem, D.H., Gardiner, S.J.: Classical Potential Theory. Springer, London (2001)

    Google Scholar 

  11. Beurling, A.: A minimum principle for positive harmonic functions. Ann. Acad. Sci. Fenn. Ser. A I 372, 7 (1965)

    MathSciNet  Google Scholar 

  12. Constantinescu, C., Cornea, A.: Ideale Ränder Riemannscher Flächen. Springer, Berlin (1963)

    MATH  Google Scholar 

  13. Dahlberg, B.: A minimum principle for positive harmonic functions. Proc. London Math. Soc. (3) 33, no. 2, 238–250 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Essén, M.: On Wiener conditions for minimally thin and rarefied sets. In: Complex Analysis. pp. 41–50. Birkhäuser, Basel (1988)

    Google Scholar 

  15. Essén, M.: On minimal thinness, reduced functions and Green potentials. Proc. Edinburgh Math. Soc. (2) 36, no. 1, 87–106 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Essén, M., Jackson, H. L.: On the covering properties of certain exceptional sets in a half-space. Hiroshima Math. J. 10, no. 2, 233–262 (1980)

    MATH  MathSciNet  Google Scholar 

  17. Fatou, P.: Séries trigonométriques et séries de Taylor. Acta. Math. 30, 335–400 (1906)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fuglede, B.: Le théorème du minimax et la théorie fine du potentiel. Ann. Inst. Fourier (Grenoble) 15, no. 1, 65–88 (1965)

    MATH  MathSciNet  Google Scholar 

  19. Gardiner, S.J.: Sets of determination for harmonic functions. Trans. Am. Math. Soc. 338, no. 1, 233–243 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gehring, F.W., Osgood, B.G.: Uniform domains and the quasihyperbolic metric. J. Analyse Math. 36, 50–74 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hayman, W.K., Kennedy, P.B.: Subharmonic Functions I. Academic Press, London (1976)

    MATH  Google Scholar 

  22. Helms, L.L.: Introduction to Potential Theory. Robert E. Krieger Publishing Co., Huntington, New York (1975)

    Google Scholar 

  23. Jerison, D.S., Kenig, C.E.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46, no. 1, 80–147 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  24. Landkof, N.S.: Foundations of Modern Potential Theory. Springer, New York (1972)

    MATH  Google Scholar 

  25. Lelong-Ferrand, J.: Étude au voisinage de la frontière des fonctions subharmoniques positives dans un demi-espace. Ann. Sci. École Norm. Sup. (3) 66, 125–159 (1949)

    MATH  MathSciNet  Google Scholar 

  26. Martin, R.S.: Minimal positive harmonic functions. Trans. Am. Math. Soc. 49, 137–172 (1941)

    Article  MATH  Google Scholar 

  27. Maz'ya, V.G.: On Beurling's theorem on the minimum principle for positive harmonic functions (Russian). Zap. Nauch. Semin. LOMI 30, 76–90 (1972)

    Google Scholar 

  28. Miyamoto, I., Yanagishita, M., Yoshida, H.: On harmonic majorization of the Martin function at infinity in a cone. Czechoslovak Math. J. 55(130), no. 4, 1041–1054 (2005)

    MathSciNet  Google Scholar 

  29. Miyamoto, I., Yanagishita, M.: Some characterizations of minimally thin sets in a cylinder and Beurling–Dahlberg–Sjögren type theorems. Proc. Am. Math. Soc. 133, no. 5, 1391–1400 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  30. Naïm, L.: Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel. Ann. Inst. Fourier, Grenoble 7, 183–281 (1957)

    MATH  Google Scholar 

  31. Sjögren, P.: Une propriété des fonctions harmoniques positives, d'après Dahlberg. Séminaire de Théorie du Potentiel de Paris, Lect. Notes Math. 563, 275–283 (1976)

    Article  Google Scholar 

  32. Sjögren, P.: Weak L 1 characterizations of Poisson integrals, Green potentials and H p spaces. Trans. Am. Math. Soc. 233, 179–196 (1977)

    Article  Google Scholar 

  33. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  34. Widman, K.-O.: Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand. 21, 17–37 (1968)

    MathSciNet  Google Scholar 

  35. Zhang, Y.: Comparaison entre l'effilement interne et l'effilement minimal. C. R. Acad. Sci. Paris Sér. I Math. 304, no. 1, 5–8 (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Aikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Aikawa, H. (2010). Minimal Thinness and the Beurling Minimum Principle. In: Laptev, A. (eds) Around the Research of Vladimir Maz'ya III. International Mathematical Series, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1345-6_2

Download citation

Publish with us

Policies and ethics