Skip to main content

Polysaccharide Vaccines

  • Chapter
  • First Online:
Vaccines: A Biography
  • 3789 Accesses

Abstract

By the first half of the twentieth century, many of the most clinically important infectious diseases of humans, including smallpox, yellow fever, and influenza, had been controlled through the use of either live-attenuated or killed-whole cell vaccines. Certain bacterial infections, such as cholera and typhoid had been successfully addressed using killed organisms (refer to Chap. 6); others, such as tetanus and diphtheria, had been controlled using vaccines comprising immunogenic bacterial component proteins (refer to Chap. 7). Vaccinology’s subsequent “golden age,” made possible by advances in the laboratory in the late 1940s that allowed the growth of viruses ex vivo in cell culture systems (refer to Chap. 9), led directly to successful vaccines against the scourges of childhood, such as polio, measles, mumps, and rubella. Despite these apparent successes, other clinically important pathogens continued to elude a vaccine solution. It was through the study of these organisms that landmark discoveries in microbiology and immunology paved the way for a novel approach to vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams WG, Deaver KA, Cochi SL et al (1993) Decline of childhood Haemophilus influenzae type b (Hib) disease in the HIB vaccine era. JAMA 269:221–226

    Article  CAS  PubMed  Google Scholar 

  • Alexander HE, Heidelberger M, Leidy G (1944) The protective or curative element in H. influenzae rabbit serum. Yale J Biol Med 16:425–430

    CAS  Google Scholar 

  • Alexander CE, Sanborn WR, Cherriere G et al (1968) Sulfadiazine-resistant group a Neisseria meningitides. Science 161(845):1019

    Article  CAS  PubMed  Google Scholar 

  • Artenstein MS (1975) Control of meningococcal meningitis with meningococcal vaccines. Yale J Biol Med 48:197–200

    CAS  PubMed  Google Scholar 

  • Artenstein MS, Gold R (1970) Current status of prophylaxis of meningococcal disease. Milit Med 135:735–739

    CAS  Google Scholar 

  • Artenstein MS, Gold R, Zimmerly JG et al (1970) Prevention of meningococcal disease by group C polysaccharide vaccine. N Engl J Med 282:417–420

    Article  CAS  PubMed  Google Scholar 

  • Austrian R (1975) Random gleanings from a life with the pneumococcus. J Infect Dis 131(4):474–484

    CAS  PubMed  Google Scholar 

  • Austrian R (1978) The Jeremiah Metzger lecture: of gold and pneumococci: a history of pneumococcal vaccines in South Africa. Trans Am Clin Climatol Assoc 89:141–161

    CAS  PubMed  Google Scholar 

  • Austrian R (1996) Bacterial polysaccharide vaccines. In: Plotkin S, Fantini B (eds) Vaccinia, vaccination and vaccinology: Jenner, Pasteur and their successors. Elsevier, Paris

    Google Scholar 

  • Austrian R, Gold J (1964) Pneumococcal bacteremia with especial reference to bacterimic pneumococcal pneumonia. Ann Intern Med 60(5):759–776

    CAS  PubMed  Google Scholar 

  • Austrian R, Douglas RM, Scheffman G et al (1976) Prevention of pneumococcal pneumonia by vaccination. Trans Assoc Am Phys 89:184–194

    CAS  PubMed  Google Scholar 

  • Avery OT, Goebel WF (1929) Chemo-immunological studies on conjugated carbohydrate-proteins. II. Immunological specificity of synthetic sugar-protein antigens. http://www.jem.rupress.org. Accessed 18 May 2009

    Google Scholar 

  • Avery OT, MacLeod CM, McCarty M (1979) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 149(2):297–326

    Article  CAS  PubMed  Google Scholar 

  • Bisgard KM, Kao A, Leake J et al (1998) Haemophilus influenzae invasive disease in the United States, 1994–1995: near disappearance of a vaccine-preventable childhood disease. Emerg Infect Dis 4(2):229–237

    Article  CAS  PubMed  Google Scholar 

  • Black S, Shinefield H, Fireman B et al (2000) Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr Infect Dis J 19:187–195

    Article  CAS  PubMed  Google Scholar 

  • Bolan G, Broome CV, Facklam RR et al (1986) Pneumococcal vaccine efficacy in selected populations in the United States. Ann Intern Med 104:1–6

    CAS  PubMed  Google Scholar 

  • Cataldo JR, Audet HH, Hesson DK et al (1968) Sulfadiazine and sulfadiazine-penicillin in mass prophylaxis of meningococcal carriers. Mil Med 133:453–457

    CAS  PubMed  Google Scholar 

  • Center KJ (2007) Prevenar vaccination: review of the global data, 2006. Vaccine 25(16):3085–3089

    Article  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2000) Preventing pneumococcal disease among infants and young children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR 49:1–35

    Google Scholar 

  • Centers for Disease Control and Prevention (2002) Progress toward eliminating Haemophilus influenzae type b disease among infants and children-United States, 1998–2000. MMWR 51(11):234–237

    Google Scholar 

  • Centers for Disease Control and Prevention (2005) Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease-United States, 1998–2003. MMWR 54:893–897

    Google Scholar 

  • Chandran A, Patt JP, Santosham M (2008) Haemophilus influenzae vaccines. In: Plotkin SA, Orenstein WA and Offit PA (eds) Vaccines, 5th edn. Elsevier, China

    Google Scholar 

  • Corner GW (1964) A history of the Rockefeller Institute: 1901–1953 origins and growth. The Rockefeller Institute Press, New York

    Google Scholar 

  • Danielson L, Mann E (1806) The history of a singular and very mortal disease, which lately made its appearance in Medfield-symptoms of the disorder-its progress and termination-appearances on dissection-the different methods of treatment, and what eventually proved successful. Med Agric Regist 1(5):65–69

    Google Scholar 

  • de Greef SC, de Melker He, Spanjaard L et al (2006) Protection from routine vaccination at the age of 14 months with meningococcal serogroup C conjugate vaccine in the Netherlands. Pediatr Infect Dis J 25:79–80

    Article  Google Scholar 

  • Dochez AR, Avery OT (1917) The elaboration of specific soluble substance by pneumococcus during growth. J Exp Med 26(4):477–493

    Article  CAS  PubMed  Google Scholar 

  • Dubos RJ (1976) The professor, the institute, and DNA. The Rockefeller University Press, New York

    Google Scholar 

  • Ekwurzel GM, Simmons JS (1938) Studies on immunizing substances in pneumococci. VIII. Report on field tests to determine the prophylactic value of a pneumococcus antigen. Public Health Rep 53(42):1877–1894

    CAS  Google Scholar 

  • Eskola J, Käyhty H, Takala AK (1990) A randomized, prospective filed trial of a conjugate vaccine in the protection of infants and young children against invasive Haemophilus influenzae type b disease. N Engl J Med 323(20):1381–1387

    Article  CAS  PubMed  Google Scholar 

  • Eskola J, Anttila M (1999) Pneumococcal conjugate vaccines. Pediatr Infect Dis J 18:543–551

    Article  CAS  PubMed  Google Scholar 

  • Finland M, Brown JW (1938) Reactions of human subjects to the injection of purified type specific pneumococcus polysaccharides. J Clin Invest 17:479–488

    Article  Google Scholar 

  • Finland M, Dowling HF (1935) Cutaneous reactions and antibody response to intracutaneous injections of pneumococcus polysaccharides. J Immunol 29:285–299

    Google Scholar 

  • Finland M, Ruegsegger JM (1935) Immunization of human subjects with the specific carbohydrates of type III and the related type VIII pneumococcus. J Clin Invest 14:829–832

    Article  Google Scholar 

  • Finland M, Sutliff WD (1931) Specific cutaneous reactions and circulating antibodies in the course of lobar pneumonia. I. Cases receiving no serum therapy. J Exp Med 54:637–652

    Article  Google Scholar 

  • Finland M, Sutliff WD (1932) Specific antibody response of human subjects to intracutaneous injection of pneumococcus products. J Exp Med 55:853–865

    Article  Google Scholar 

  • Flexner S (1913) The results of the serum treatment in thirteen hundred cases of epidemic meningitis. J Exp Med 17:553–576

    Article  CAS  PubMed  Google Scholar 

  • Fothergill LD, Wright J (1933) Influenzal meningitis: relation of age incidence to the bactericidal power of blood against the causal organism. J Immunol 24:273–284

    Google Scholar 

  • Francis T Jr, Tillett WS (1930) Cutaneous reactions in pneumonia. The development of antibodies following the intradermal injection of type-specific polysaccharide. J Exp Med 52:573–585

    Article  CAS  PubMed  Google Scholar 

  • Gauld JR, Nitz RE, Hunter D (1965) Epidemiology of meningococcal meningitis at Fort Ord. Am J Epidemiol 82:56–60

    Google Scholar 

  • Giuliani MM, Adu-Bobie J, Comanducci M et al (2006) A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103(29):10834–10839

    Article  CAS  PubMed  Google Scholar 

  • Gold R, Artenstein MS (1971) Meningococcal infections. 2. Field trial of group C meningococcal polysaccharide vaccine in 1969–70. Bull World Hlth Org 45:279–282

    CAS  Google Scholar 

  • Goldschneider I, Gotschlich EC, Artenstein MS (1969a) Human immunity to the meningococcus. I. The role of humoral antibodies. J Exp Med 129(6):1307–1326

    Article  CAS  PubMed  Google Scholar 

  • Goldschneider I, Gotschlich EC, Artenstein MS (1969b) Human immunity to the meningococcus. II. Development of natural immunity. J Exp Med 129(6):1327–1348

    Article  CAS  PubMed  Google Scholar 

  • Gotschlich EC (2009) Personal communication

    Google Scholar 

  • Gotschlich EC, Goldschneider I, Artenstein MS (1969a) Human immunity to the meningococcus. IV. Immunogenicity of group A and group C memingococcal polysaccharides in human volunteers. J Exp Med 129(6):1367–1384

    Article  CAS  PubMed  Google Scholar 

  • Gotschlich EC, Goldschneider I, Artenstein MS (1969b) Human immunity to the meningococcus. V. The effect of immunization with meningococcal group C polysaccharide on the carrier state. J Exp Med 129(6):1385–1395

    Article  CAS  PubMed  Google Scholar 

  • Gotschlich EC, Liu TY, Artenstein MS (1969) Human immunity to the meningococcus. III. Preparation and immunochemical properties of the group A, group B, and group C meningococcal polysaccharides. J Exp Med 129(6):1349–1365

    Article  CAS  PubMed  Google Scholar 

  • Greenwood B (1999) Manson lecture. Meningococcal meningitis in Africa. Trans R Soc Trop Med Hyg 93(4):341–353

    Article  CAS  PubMed  Google Scholar 

  • Grijalva CG, Griffin MR (2008) Population-based impact of routine infant immunization with pneumococcal conjugate vaccine in the USA. Expert Rev Vaccines 7(1):83–95

    Article  PubMed  Google Scholar 

  • Heidelberger M (1927) Immunologically specific polysaccarides. Chem Rev 3(4):403–423

    Article  CAS  Google Scholar 

  • Heidelberger M (1977) A “pure” organic chemist’s downward path. Annu Rev Microbiol 31:1–12

    Article  CAS  PubMed  Google Scholar 

  • Heidelberger M (1979) A “pure” organic chemist’s downward path: chapter 2—the years at P and S. Annu Rev Biochem 48:1–21

    Article  CAS  PubMed  Google Scholar 

  • Heidelberger M, Avery OT (1923) The soluble specific substance of pneumococcus. J Exp Med 38:73–79

    Article  CAS  PubMed  Google Scholar 

  • Heidelberger M, Avery OT (1924) The soluble specific substance of pneumococcus: second paper. J Exp Med 40:301–317

    Article  CAS  PubMed  Google Scholar 

  • Heidelberger M, Kendall FE (1929) A quantitative study of the precipitin reaction between type III pneumococcus polysaccharide and purified homologous antibody. J Exp Med 50:809–823

    Article  CAS  PubMed  Google Scholar 

  • Heidelberger M, MacLeod CM, Di Lapi M (1948) The human antibody response to simultaneous injection of six specific polysaccharides of pneumococcus. J Exp Med 88:369–372

    Article  CAS  PubMed  Google Scholar 

  • Jódar L, Feavers IM, Salibury D et al (2002) Development of vaccines against meningococcal disease. Lancet 359:1499–1508

    Article  PubMed  Google Scholar 

  • Kabat EA (1983) Getting started 50 years ago-experiences, perspectives, and problems of the first 21 years. Annu Rev Immunol 1:1–32

    Article  CAS  PubMed  Google Scholar 

  • Kabat EA, Kaiser H, Sikorski H (1945) Preparation of the type-specific polysaccharide of the type I meningococcus and a study of its effectiveness as an antigen in human beings. J Exp Med 80:299–307

    Article  Google Scholar 

  • Klein JO, Plotkin SA (2007) Robert Austrian: 1917–2007. Clin Infect Dis 45:2–3

    Article  Google Scholar 

  • Kuhn TS (1996) The structure of scientific revolutions, 3rd edn. The University of Chicago Press, Chicago

    Google Scholar 

  • Kyaw MH, Lynfield R, Schaffner W et al (2006) Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N Engl J Med 354(14):1455–1463

    Article  CAS  PubMed  Google Scholar 

  • Larrauri A, Cano R, Garcia M et al (2005) Impact and effectiveness of meningococcal C conjugate vaccine following its introduction in Spain. Vaccine 23:4097–4100

    Article  PubMed  Google Scholar 

  • Lin FYC, Ho VA, Khiem HB et al. (2001) The efficacy of a Salmonella typhi Vi conjugate vaccine in two-to-five-year-old children. N Engl J Med 344:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • MacLeod C (1957) Obituary notice: Oswald Theodore Avery, 1877–1955. J Gen Microbiol 17(2):539–549

    Google Scholar 

  • MacLeod CM, Hodges RG, Heidelberger M et al (1945) Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 82:445–465

    Article  Google Scholar 

  • Malkin HM (1993) The trials and tribulations of George Miller Sternberg (1838–1915) – America’s first bacteriologist. Perspect Biol Med 36(4):666–678

    CAS  PubMed  Google Scholar 

  • Morais JS, Munford RS, Risi JB et al (1974) Epidemic disease due to serogroup C Neisseria meningitidis in São Paulo, Brazil J Infect Dis 129:568–571

    Google Scholar 

  • Neufeld F (1902) Ueber die Agglutination der Pneumokokken und u-ber die Theorieen der Agglutination. Z Hyg Infektionskr 40:54–72

    Article  Google Scholar 

  • Osler W (1901) The principles and practice of medicine, 4th edn. D. Appleton and Company, New York

    Google Scholar 

  • Parish HJ (1965) A history of immunization. E & S Livingston Ltd., London

    Google Scholar 

  • Parke JC, Schneerson R, Robbins JB (1972) The attack rate, age incidence, racial distribution and case fatality rate of Haemophilus influenzae type b meningitis in Mecklenburg County, North Carolina. J Pediatr 81:765–769

    Article  PubMed  Google Scholar 

  • Peltola H, Käyhty H, Sivonen A et al (1977) Haemophilus influenzae type b capsular polysaccharide vaccine in children: a double blind study of 100,000 vaccinees 3 months to 5 years of age in Finland. Pediatrics 60:730–737

    CAS  PubMed  Google Scholar 

  • Peltola H, Käyhty H, Virtanen M et al (1984) Prevention of Haemophilus influenzae type b bacteremic infections with the capsular polysaccharide vaccine. 310(24):1561–1566

    CAS  Google Scholar 

  • Peter CG (1998) Responses of children immunized with capsular polysaccharide of Haemophilus influenzae type B, by David Smith, MD, et al, Pediatrics, 1973;52:637–644; and Haemophilus influenzae type B capsular polysaccharide vaccine in children: a double-blind field study of 100,000 vaccinees 3 months to 5 years of age in Finland, by Heikii Peltola, MD, et al. Pediatrics, 1977;60:730–737. Pediatrics 102(1 Pt 2):252–254

    CAS  PubMed  Google Scholar 

  • Pittman M (1931a) The action of type-specificity Haemophilus influenzae antiserum. J Exp Med 58:683–706

    Article  Google Scholar 

  • Pittman M (1931b) Variation and type specificity in the bacterial species Haemophilus influenzae. J Exp Med 53:471–492

    Article  CAS  PubMed  Google Scholar 

  • Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820

    Article  CAS  PubMed  Google Scholar 

  • Poehling KA, Talbot TR, Griffin MR et al (2006) Invasive pneumococcal disease among infants before and after introduction of pneumococcal conjugate vaccine. JAMA 295(14):1668–1674

    Article  CAS  PubMed  Google Scholar 

  • Ramsay ME, Andrews N, Kaczmarski EB et al (2001) Efficacy of meningococcal serogroup C conjugate vaccine in teenagers and toddlers in England. Lancet 357:195–196

    Article  CAS  PubMed  Google Scholar 

  • Rivers TM, Kohn LA (1921) The biological and the serological reactions of influenza bacilli producing meningitis. J Exp Med 34(5):477–494

    Article  CAS  PubMed  Google Scholar 

  • Robbins JB, Schneerson R, Szu SC et al (1996a) Polysaccharide – protein conjugate vaccines. In: Plotkin S, Fantini B (eds) Vaccinia, vaccination and vaccinology: Jenner, Pasteur and their successors. Elsevier, Paris

    Google Scholar 

  • Robbins JB, Schneerson R, Anderson P et al (1996b) Prevention of systemic infections, especially meningitis, caused by Haemophilus influenzae type b. JAMA 276(14):1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Schiemann O, Casper W (1927) Sind die spezifisch präcipitablen Substanzen der 3 Pneumokokkentypen Haptene? Ztschr f Hyg u Infektionskr 108:220–257

    Article  Google Scholar 

  • Schneerson R, Robbins JB (1975) Induction of serum Haemophilus influenzae type b capsular antibodies in adult volunteers fed cross-reacting Escherichia coli 075:K100:H5. N Engl J Med 292:1093–1096

    Article  CAS  PubMed  Google Scholar 

  • Schwentker FF, Gelman S, Long PH (1937) The treatment of meningococcal meningitis with sulphonamide: preliminary report. JAMA 108:1407–1408

    CAS  Google Scholar 

  • Sell HW, Merrill RE, Doyne EO et al (1972) Long-term sequelae of Haemophilus influenzae meningitis. Pediatrics 49:206–211

    CAS  PubMed  Google Scholar 

  • Shapiro ED, Berg AT, Austrian R et al (1991) The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N Engl J Med 325(21):1453–1460

    Article  CAS  PubMed  Google Scholar 

  • Sims RV, Steinman WC, McConville JH et al (1988) The clinical effectiveness of pneumococcal vaccine in the elderly. Ann Intern Med 108:653–657

    CAS  PubMed  Google Scholar 

  • Smit P, Oberholtzer D, Hayden-Smith S et al (1977) Protective efficacy of pneumococcal polysaccharide vaccines. JAMA 238:2613–2616

    Article  CAS  PubMed  Google Scholar 

  • Smith DH, Peter G, Ingram DL et al (1973) Responses of children immunized with the capsular polysaccharide of Haemophilus influenzae. Pediatrics 52:637–641

    CAS  PubMed  Google Scholar 

  • Stephens DS, Greenwood B, Brandtzaeg P (2007) Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369:2196–2210

    Article  PubMed  Google Scholar 

  • Sternberg GM (1897) The etiology of croupous pneumonia. Natl Med Rev VII(7):175–177

    Google Scholar 

  • Sutton A, Schneerson R, Kendall-Morris S et al (1982) Differential complement resistance mediates virulence of Haemophilus influenzae type b. Infect Immun 35:95–104

    CAS  PubMed  Google Scholar 

  • Vieusseuz M (1805) Mémoire: Sur la maladie qui a régné a geneve au. De Medecine, Chirurgie, Pharmacie XIV:163–182

    Google Scholar 

  • Wahdan MW, Rizk F, El-Akkad AM et al (1973) A controlled field trial of a serogroup A meningococcal polysaccharide vaccine. Bull World Hlth Org 48:667

    CAS  Google Scholar 

  • Weichselbaum A (1887) Ueber die Aetiologie der akuten meningitis cerebro-spinalis. Fortschr Med 5:573–583

    Google Scholar 

  • Woodward TE (ed) (1994) The armed forces epidemiological board: the histories of the commissions. Borden Institute, Washington, DC

    Google Scholar 

  • Wright AE, Morgan WP, Cantab MB et al (1914a) Observations on prophylactic inoculation against pneumococcus infections and the results which have been achieved by it. Lancet i:1–10

    Article  Google Scholar 

  • Wright AE, Morgan WP, Cantab MB et al (1914b) Observations on prophylactic inoculation against pneumococcus infections and the results which have been achieved by it. Lancet i:87–95

    Article  Google Scholar 

Download references

Acknowledgment

The author would like to thank Dr. Emil Gotschlich for a critical review of the manuscript and for helpful suggestions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. Artenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Artenstein, A.W. (2010). Polysaccharide Vaccines. In: Artenstein, A. (eds) Vaccines: A Biography. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1108-7_16

Download citation

Publish with us

Policies and ethics