Skip to main content

Yellow Fever

  • Chapter
  • First Online:
Vaccines: A Biography

Abstract

In 1951, Max Theiler (Fig. 10.1), a Rockefeller Foundation scientist, became the only person to be awarded the Nobel Prize in Medicine and Physiology for the development of a virus vaccine (Norrby 2007). His live, attenuated 17D vaccine was not the first yellow fever vaccine to be tested in humans, but it was by far the most successful one. More than 500 million doses have been distributed since the late 1930s. Yellow fever vaccine history, told briefly in this chapter, provides numerous lessons to those interested in the science of vaccinology; it is enriched by the cast of colorful characters who were involved in vaccine discovery and introduction into routine use, and informed by the investigation of various mishaps in manufacturing and application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact the first studies showing mice to be susceptible to herpes virus were done earlier by G Blanc and J CamioPetros (Recherches experimentales sur herpes. CR Soc Biol 1921; 84: 859).

  2. 2.

     Eugen Haagen became the Chief of the Medical Department of the Luftwaffe in Nazi Germany and apparently continued studies on yellow fever. Allegedly, he made new vaccines against yellow fever and tested them on inmates of the Nazi concentration camp at Natzweiler-Struthof.

  3. 3.

     Unfortunately, Theiler and Smith’s passage series was not preserved and is not available for genetic studies, which would undoubtedly have shown which mutations were responsible for the phenotypic changes observed.

  4. 4.

    In 1976 Bio-Manguinhos (Laboratorio de Technologia em Productos Biologicos de Manguinhos) was created as the manufacturing arm of the Oswaldo Cruz Foundation.

  5. 5.

     In 1945 the monkey neurovirulence test was introduced as a requirement for the control of yellow fever 17D vaccine. The monkey test for neurovirulence itself has undergone a number of refinements over the years. The original method involved only clinical observations of the animals. In the 1960s improved methods were developed by Nathanson et al. (Am J Epidemiol 1965; 82:359–381 and 1966; 84:524–540) who identified indicator centers (nuclei) in the brain that were sensitive to differences in virulence. In 1987, the methods were further developed by Levenbook et al. (J Biol Stand 1987; 15:305–313). They described an improved clinical scoring system and more discriminatory histopathological assessment of inflammation and neuronal damage.

  6. 6.

     From 1990, when surveillance for vaccine associated adverse events was instituted in the US, through March 2006, a total of 29 additional cases of YEL-AND were reported worldwide. The cases since 1990 have been predominantly in adults (including elderly). Advanced age is now recognized as a risk factor. The incidence of YEL-AND is approximately 1 in 300,000 and the case fatality rate is probably 1–2%.

  7. 7.

     Nevertheless, vaccines manufactured in eggs, including yellow fever 17D, test positive by the product-enhanced reverse transcriptase (PERT) assay, reflecting the presence of defective particles containing endogenous avian leucosis or retrovirus sequences. No evidence has been found for infectious or inducible replication-competent retroviruses or for infection with avian leucosis or endogenous avian retrovirus in humans.

  8. 8.

     Determined in a constant serum-virus dilution test, the log10 neutralization index being the difference in log10 titer of virus with and without serum containing neutralizing antibody.

  9. 9.

    The age cut-off was later changed to 9 months, which is the age at which infants are routinely immunized in the Expanded Programme for Immunization in endemic countries.

References

  • Andervont HB (1929) Activity of herpetic virus in mice. J Infect Dis 44:383–393

    Google Scholar 

  • Anonymous (1937) Acute infectious jaundice and the administration of measles serum. In: McNalby A (ed) On the state of public health. Annual Report of the Chief Medical Officer, Ministry of Health, for the year of 1937. HMSO, London, 4, p 235

    Google Scholar 

  • Barme M, Bronnert C (1984) Thermostabilisation du vaccin antiamaril 17D lyophilise. I. Essai des substances protectrices. J Biol Stand 12:435–442

    Article  CAS  PubMed  Google Scholar 

  • Bauer JH (1931) The duration of passive immunity in yellow fever. Am J Trop Med Hyg s1–11(6):451–457

    Google Scholar 

  • Belmusto-Worn VE, Sanchez JL, McCarthy K et al (2005) Randomized, double-blind, phase III, pivotal field trial of the comparative immunogenicity, safety, and tolerability of two yellow fever 17D vaccines (Arilvax and YF-VAX) in healthy infants and children in Peru. Am J Trop Med Hyg 72:189–197

    CAS  PubMed  Google Scholar 

  • Benchimol JL (ed) (2001) Febre Amarela. A Doença ea Vacina, Uma História Inacabada. Editora Fiocruz, Rio de Janeiro

    Google Scholar 

  • Berry GP, Kitchen SF (1931) Yellow fever accidentally contracted in the laboratory: study of seven cases. Am J Trop Med 11:365–434

    Google Scholar 

  • Bres P, Lacan A, Diop I et al (1963) Des campagnes de vaccination antiamarile en République du Senégal. Bull Soc Pathol Exot 64:1038–1043

    Google Scholar 

  • Bloom KJ (1993) The Mississippi Valley’s great yellow fever epidemic of 1878. Louisiana State University Press, Baton Rouge

    Google Scholar 

  • Bonnel PH, Deutschman Z (1957) La fièvre jaune en Afrique au tours des années récentes. Bull WHO 11:325–389

    Google Scholar 

  • Burfoot C, Yound PA, Finter NB (1977) Thermal stability of stabilized 17D yellow fever virus vaccine. J Biol Stand 5:173–179

    Article  CAS  PubMed  Google Scholar 

  • Burros HW, Hargett MV (1947) Yellow fever vaccine inactivation studies. Public Health Rep 62:940–956

    Google Scholar 

  • Carter HR (1900) Note on interval between infecting and secondary cases of yellow fever from records of yellow fever at Orwood and Taylor, Mississippi, in 1898. New Orleans Med Surg J 52:617–636

    Google Scholar 

  • Carter HR (1931) Yellow fever: an epidemiological and historical study of its place of origin. Williams & Wilkins, Baltimore

    Google Scholar 

  • Centers for Disease Control and Prevention (1969). Recommendations of the Immunization Practices Advisory Committee. Yellow fever vaccine. MMWR 18:189

    Google Scholar 

  • Centers for Disease Control and Prevention (2001) Notice to readers: fever, jaundice, and multiple organ system failure associated with 17D-derived yellow fever vaccination, 1996–2001. MMWR 50(30):643–645

    Google Scholar 

  • Chambon L, Wone I (1967) Une epidemie de fièvre jaune au Senégal en 1965. Bull WHO 36:113–150

    CAS  PubMed  Google Scholar 

  • Chan RC, Penney DJ, Little D et al (2001) Hepatitis and death following vaccination with 17D-204 yellow fever vaccine. Lancet 358(9276):121–122

    Article  CAS  PubMed  Google Scholar 

  • Costa Lima AM (1938) Considerações sobrea a propagação de febre amarela e a vacinacçã contra esta doença. Rev Med Cir Brasil 46:371–382

    Google Scholar 

  • Courtois G (1956) Time of appearance and duration of immunity conferred by 17D vaccine. In: Smithburn KC et al. Yellow Fever Vaccination. WHO, Geneva 105–114

    Google Scholar 

  • Davis NC (1934) On the use of immune serum at various intervals after the inoculation of yellow fever virus into rhesus monkeys. J Immunol 26:361–390

    Google Scholar 

  • Deubel V, Ekue EK, Diop MM et al (1986) Introduction a L’analyse de la virulence du virus de la fievre jaune (Flaviviridae): Etudes genetiques, immunochimiques et biologiques comparatives entre les souches attenuees vaccinales et leurs souches parentales. Ann Inst Pasteur/Virol 137E:191

    Google Scholar 

  • Draper CC (1967) A yellow fever vaccine free from avian leukosis viruses. J Hyg (Camb) 65:505–513

    Article  CAS  Google Scholar 

  • Durieux C (1956) Mass yellow fever vaccination in French Africa south of the Sahara. In: Smithburn KC et al. Yellow Fever Vaccination. WHO, Geneva 115–121

    Google Scholar 

  • Elton NW (1952) Public health aspects of the campaign against yellow fever in Central America. Am J Public Health 42:170–174

    Article  CAS  Google Scholar 

  • Engel AR, Vasconcelos PF, McArthur MA et al (2006) Characterization of a viscerotropic yellow fever vaccine variant from a patient in Brazil. Vaccine 24(15):2803–2809

    Article  CAS  PubMed  Google Scholar 

  • Findlay GM (1934) Immunization against yellow fever with attenuated neurotropic virus. Lancet 2:983–985

    Article  Google Scholar 

  • Findlay GM, Clarke LP (1935). Reconversion of neurotropic into viscerotropic strain of yellow fever virus in rhesus monkeys. Trans Roy Soc Trop Med Hyg 28:579–600

    Article  Google Scholar 

  • Findlay GM, MacCallum FO (1937) Note on acute hepatitis and yellow fever immunization. Trans Roy Soc Trop Med Hyg 31:297–308

    Article  Google Scholar 

  • Findlay GM, Stern RO (1935) Essential neurotropism of yellow fever virus. J Pathol Bacteriol 41:431–438

    Article  Google Scholar 

  • Finlay CJ (1881) El mosquito hipoteticamente considerado como agente de transmission de la fiebre amarilla. Anal Real Acad Ciencias Med Fisicas Naturales 18:147–169

    Google Scholar 

  • Finlay CJ (1891) Inoculations for yellow fever by means of contaminated mosquitoes. Am J Med Sci 102:264–268

    Article  Google Scholar 

  • Fox JP, Penna HA (1943) Behavior of 17D yellow fever virus in rhesus monkeys. Relation to substrain, dose and neural or extraneural inoculation. Am J Hyg 38:152–172

    Google Scholar 

  • Fox JP, Lennette EH, Manso C et al (1942a) Encephalitis in man following vaccination with 17D yellow fever virus. Am J Hyg 36:117–142

    Google Scholar 

  • Fox JP, Manso C, Penna HA, Para M (1942b) Observations on the occurrence of icterus in Brazil following vaccination against yellow fever. Am J Hyg 36:68–116

    Google Scholar 

  • Fox JP, Kossobudzki SL, Cunha JF (1943) Field studies on immune response to 17D yellow fever virus: relation to virus substrain, dose, and route of inoculation. Am J Hyg 38:113–138

    Google Scholar 

  • Galler R, Pugachev KV, Santos CL, et al (2001) Phenotypic and molecular analyses of yellow fever 17DD vaccine viruses associated with serious adverse events in Brazil. Virology 290(2):309–319

    Article  CAS  PubMed  Google Scholar 

  • Government Printing Office (1880) Report on Yellow fever in USS Plymouth, Washington, DC

    Google Scholar 

  • Government Printing Office (1911) Yellow fever. A compilation of various publications. Results of the work of Major Walter Reed, Medical Corps, United States Army, and the Yellow Fever Commission. 61st Congress Doc No 822, Washington, DC

    Google Scholar 

  • Groot H, Riberiro RB (1962) Neutralizing and haemagglutination-inhibiting antibodies to yellow fever 17 years after vaccination with 17D vaccine. Bull WHO 27:699–707

    CAS  PubMed  Google Scholar 

  • Guiteras J (1901) Experimental yellow fever at the inoculation station of the sanitary department of Havana, with a view to producing immunization. Am Med 28:809–817

    Google Scholar 

  • Haagen E, Theiler M (1932) Untersuchungen tiber das Verhalten des Gelbfiebervirus in der Gewebekultur. Zentralbl Bakt 125:145–158

    Google Scholar 

  • Hahn CH, Dalrymple JM, Strauss JH et al (1987) Comparison of the virulent Asibi strain of yellow fever virus with the 17D vaccine strain derived from it. Proc Natl Acad Sci U S A 84(7):0027–2023

    Article  Google Scholar 

  • Hargett MV, Burrus HW, Donovan A (1943) Aqueous-base yellow fever vaccine. Public Health Rep 58:505–512

    CAS  Google Scholar 

  • Harris RJC, Dougherty RM, Biggs PM et al (1966) Contaminant viruses in two live virus vaccines. J Hyg (Camb) 64:1–7

    Article  CAS  Google Scholar 

  • Hindle E (1928) A yellow fever vaccine. Br Med J 1:976–977

    Article  PubMed  Google Scholar 

  • Jennings AD, Whitby JE, Minor PD et al (1993) Comparison of the nucleotide and deduced amino acid sequences of the structural protein genes of the yellow fever 17DD vaccine strain from Senegal with those of other yellow fever vaccine viruses. Vaccine 11:679–681

    Article  CAS  PubMed  Google Scholar 

  • Kaplan JE, Nelson DB, Schonberger LB et al (1984) The effect of immune globulin on the response to trivalent oral poliovirus and yellow fever vaccinations. Bull WHO. 62(4):585–590

    CAS  PubMed  Google Scholar 

  • Lai CJ, Monath TP (2003) Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis. Adv Virus Res 61:470–509

    Google Scholar 

  • Laigret J (1933) Recherches experimentales sur la fievre jaune. Arch Inst Pasteur Tunis 21:412–430

    Google Scholar 

  • Laigret J (1936) De l’interpretation des troubles consecutifs aux vaccinations par les virus vivants en particulier a la vaccination de la fievre jaune. Bull Soc Path Exot 29:230–234

    Google Scholar 

  • Lindsey NP, Schroeder BA, Miller ER et al (2008) Adverse event reports following yellow fever vaccine. Vaccine 26:6077–6082

    Article  CAS  PubMed  Google Scholar 

  • Lloyd W (1935) Use of cultivated virus together with immune serum in vaccination against yellow fever. Bull Off Int Hyg Public 27:2365–2368

    Google Scholar 

  • Lloyd W, Theiler M, Ricci N (1937) Modification of the virulence of yellow fever virus by cultivation in tissues in vitro. Trans Roy Soc Trop Med Hyg 24:481–529

    Google Scholar 

  • Louis JJ, Chopard P, Larbre F (1981) A case of encephalitis after anti-yellow fever vaccination with the 17D strain. Pediatrie 36(7):547–550

    CAS  PubMed  Google Scholar 

  • Lurman A (1885) Eine Icterusepidemie. Berl Klin Wochenschr 22:20–23

    Google Scholar 

  • MacNamara FN (1953) Reactions following neurotropic yellow fever vaccine given by scarification in Nigeria. Trans Roy Soc Trop Med Hyg 47:199–208

    Article  CAS  PubMed  Google Scholar 

  • Marchoux E, Salimbeni P, Simond PL (1903) La fièvre jaune. Ann Inst Pasteur 17:665–731

    Google Scholar 

  • Martin M, Tsai TF, Cropp B et al (2001) Fever and multisystem organ failure associated with 17D-204 yellow fever vaccination: a report of four cases. Lancet 358(9276):98–104

    Article  CAS  PubMed  Google Scholar 

  • Mason RA, Tauraso NM, Spertzel RO et al (1973) Yellow fever vaccine: direct challenge of monkeys given graded doses of 17D vaccine. Appl Microbiol 25(4):539–544

    CAS  PubMed  Google Scholar 

  • Mathis C, Sellards AW, Laigret J (1928) Sensibilité du Macacus rhesus au virus de la fièvre jaune. C R Acad Sci 186:604–606

    Google Scholar 

  • Mathis C, Laigret J, Durieux C (1934) Trois mille vaccinations contre la fievre jaune en Afrique Occidentale Francaise au moyen du virus vivant de souris, attenue par vieillissement. C R Acad Sci (Paris) 199:742–744

    Google Scholar 

  • Melnick JL (1968) Latent viral infections in donor tissues and in recipients of vaccines. Natl Cancer Inst Mongr 29:337–349

    CAS  Google Scholar 

  • Monath TP, Nichols R, Archambault WT et al (2002) Comparative safety and immunogenicity of two yellow fever 17D vaccines (ARILVAX and YF-VAX) in a phase III multicenter, double-blind clinical trial. Am J Trop Med Hyg 66:533–541

    CAS  PubMed  Google Scholar 

  • Monath TP, Cetron MS, Teuwen DE (2007) Yellow fever. In: Plotkin SA, Orenstein WA, Offit PA (eds) Vaccines, 5th edn. Elsevier Inc., China

    Google Scholar 

  • Nicolle C, Laigret J (1935) La vaccination contre la fievre jaune par le virus amaril desseche et enrobe. Compt Rend Acad Sci (Paris) 201:312–314

    Google Scholar 

  • Noguchi H (1925) Yellow fever research: summary L. icteroides. J Trop Med 28:185–193

    Google Scholar 

  • Norrby E (2007) Yellow fever and Max Theiler: the only Nobel Prize for a virus vaccine. J Exp Med 204:2779–2784

    Article  CAS  PubMed  Google Scholar 

  • Okell CC (1930) Experiments with yellow fever vaccine in monkeys. Trans Roy Soc Trop Med Hyg 24:251–254

    Article  Google Scholar 

  • Pan American Health Organization (2008) Serious adverse events associated with receipt of yellow fever vaccine during a mass immunization campaign, Peru, 2007. Findings and recommendations of an expert panel. Pan American Health Organization, Washington DC, March 6

    Google Scholar 

  • Panthier R (1956) A propos de quelques cas de reactions nerveuses tardives observees chez des nourissons apres vaccination antiamarile (17D). Bull Soc Pathol Exot 49:477–494

    CAS  Google Scholar 

  • Peltier M (1941) Vaccination antiamarile simple et associée a la vaccination antivariolique par scarification. Méd Trop 1–49

    Google Scholar 

  • Peltier M (1947) Yellow fever vaccination, simple or associated with vaccination against smallpox, of the populations of French West Africa by the method of the Pasteur Institute of Dakar. Am J Public Health 37:1026–1032

    Article  PubMed  Google Scholar 

  • Peltier M, Durieux C, Jonchere H et al (1939) Penetration du virus amaril neurotrope par voie cutanee: Vaccination contre la fievre jaune et la variole, note preliminaire. Bull Acad Med (Paris) 121:657–660

    Google Scholar 

  • Petit MA (1931) Rapport sur la valeur immunisante des vaccins employes contre la fievre jaune et la valeur therapeutique du serum antiamaril. Bull Acad Natl Med 105:522–526

    Google Scholar 

  • Petit A, Stefanopoulo GJ (1933) Utilisation du serum antiamaril d’origine animale pour la vaccination de l’homme. Bull Acad Natl Med 110:67–76

    Google Scholar 

  • Piraino F, Krumbiegel ER, Wisniewski HJ (1967) Serologic survey of man for avian leukosis virus infection. J Immunol 98:702–706

    CAS  PubMed  Google Scholar 

  • Poland JD, Calisher CH, Monath TP et al (1981) Persistence of neutralizing antibody 30–35 years after immunization with 17D yellow fever vaccine. Bull World Health Organ 59:895–900

    Google Scholar 

  • Powell JH (1949) Bring out your dead. The great plague of yellow fever in Philadelphia in 1793. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  • Pugachev K, Monath TP, Guirakhoo F et al (2008) Chimeric vaccines against Japanese encephalitis, dengue and West Nile. In: Levine M (ed) New generation vaccines, 4th edn. Informa HealthCare, New York

    Google Scholar 

  • Rey M, Satge P, Collomb H et al (1966) Aspects epidemiologiques et cliniques des encephalites consecutives a la vaccination antiamarile. Bull Soc Med Afr Noire Lang Fr 11:560–574

    Google Scholar 

  • Rey FA, Heinz FX, Mandl C et al (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 Ã… resolution. Nature 375(6529):291–298

    Article  CAS  PubMed  Google Scholar 

  • Rice CM, Lenches EM, Eddy SR et al (1985) Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733

    Article  CAS  PubMed  Google Scholar 

  • Rice CM, Grakoui A, Galler R et al (1989). Transcription of infectious yellow fever RNA from full-length templates produced by in vitro ligation. New Biol 1:285–296

    CAS  PubMed  Google Scholar 

  • Richman AV, Alusio CG, Jahnes WG et al (1972) Avian leukosis antibody response in individuals given chicken embryo derived vaccines. Proc Soc Exp Biol Med 139:235–237

    CAS  PubMed  Google Scholar 

  • Ricosse JH, Albert JP (1971) La vaccination antiamarile dans les êtats de 1′ΟΧΧΓΕ. Conférence sur l’épidemiologie et le contrôle de la fièvre jaune en Afrique de l’Ouest, Bobo Dioulasso, 20–23 March 1971 (unpublished document No 266, OCCGE, Centre Muraz, Bobo Dioulasso, Haute Volta)

    Google Scholar 

  • Robin Y, Saenz AC, Outschoom AS et al (1971) Etude de la thermostabilite du vaccin anti-amaril sur des echantillons de huit lots provenant de divers pays. Bull WHO 44:729–737

    CAS  PubMed  Google Scholar 

  • Rosenzweig EC, Babione RW, Wisseman CL, Jr (1963) Immunological studies with group B arthropod-borne viruses. IV. Persistence of yellow fever antibodies following vaccination with 17D strain yellow fever vaccine. Am J Trop Med Hyg 12:230–235

    CAS  PubMed  Google Scholar 

  • Rubin H, Fanshier L, Cornelius A et al (1962) Tolerance and immunity in chicken after congenital and contact infection with an avian leukosis virus. Virology 17:143–156

    Article  CAS  PubMed  Google Scholar 

  • Rush B (1794) An account of the bilious remitting yellow fever as it appeared in Philadelphia in the year 1793. Thomas Dobson, Philadelphia

    Google Scholar 

  • Sankale M, Bourgeade A, Wade F et al (1966). Contribution a l’ etude des reactions vaccinales observee en dehors de Dakar. Bull Soc Med Afr Noire Lang Fr 11:617–624

    CAS  PubMed  Google Scholar 

  • Sawyer WA (1934) Enquête sur l’immunité vis-à-vis de la fièvre jaune au moyen de l’épreuve de protection de la souris. Bull Off Int Hyg Public 26:1057–1059

    Google Scholar 

  • Sawyer WA (1937) A history of the activities of the Rockefeller Foundation in the investigation and control of yellow fever. Am J Trop Med 17:35–50

    Google Scholar 

  • Sawyer WA, Kitchen SF, Lloyd W (1931) Vaccination of humans against yellow fever with immune serum and virus fixed for mice. Proc Soc Exp Biol Med 29:62–64

    Google Scholar 

  • Sawyer WA, Kitchen SF, Lloyd W (1932) Vaccination against yellow fever with immune serum and virus fixed for mice. J Exp Med 55:945–969

    Article  CAS  PubMed  Google Scholar 

  • Sawyer WA, Meyer KF, Eaton MD et al (1944) Jaundice in Army personnel in the western region United States and its relation to vaccination against yellow fever. Am J Hyg 39:337–430

    Google Scholar 

  • Seeff LB, Beebe GW, Hoofnagle JH (1987) A serologic follow-up of the 1942 epidemic of post-vaccination hepatitis in the US Army. New Engl J Med 316:965–970

    Article  CAS  PubMed  Google Scholar 

  • Sellards AW (1931) Behavior of virus of yellow fever in monkeys and mice. Proc Natl Acad Sci U S A 17:339–343

    Article  CAS  PubMed  Google Scholar 

  • Sellards AW, Laigret J (1932) Vaccination de l’homme contre la fièvre jaune. C R Acad Sci 194:1609–1611

    Google Scholar 

  • Smith HH, Penna HA, Paoliello A (1938) Yellow fever vaccination with cultured virus (17D) without immune serum. Am J Trop Med 18:437–468

    Google Scholar 

  • Smithburn KC (1956) Immunology of yellow fever. In: Smithburn KC et al. Yellow Fever Vaccination. WHO, Geneva 11–27

    Google Scholar 

  • Smithburn KC, Mahaffy AF (1945) Immunization against yellow fever. Studies on the time of development and the duration of induced immunity. Am J Trop Med s1–25:217–223

    Google Scholar 

  • Soper FL (1938) Yellow fever: present situation (October 1938) with special reference to South America. Trans Roy Soc Trop Med Hyg 32:297

    Article  Google Scholar 

  • Soper FL, Smith HH (1938) Vaccination with virus 17D in the control of jungle yellow fever in Brazil. Trans Third Int Congr Trop Med Malaria 1:295–313

    Google Scholar 

  • Sorel F (1936) La vaccination anti-amarile en Afrique occidentale francaise, mise en application du proce’de’ de vaccination Sellards-Laigret. Bull Off Int Hyg Public 28:1325–1356

    Google Scholar 

  • Stefanopoulo GJ, Duvolon S (1947) Reactions observees au cours de la vaccination contre la fievre jaune par virus attenue de culture (souche 17D). A propos de 20.000 vaccinations pratiquees par ce procede a l’Institut Pasteur de Paris (1936–1946). Bull Mem Soc Med Hop Paris 63:990

    CAS  PubMed  Google Scholar 

  • Stokes A, Bauer JH, Hudson NP (1928) Experimental transmission of yellow fever to laboratory animals. Am J Trop Med 8:103–164

    Google Scholar 

  • Stuart G (1956) Reactions following vaccination against yellow fever. In: Smithburn KC et al. (Eds) Yellow Fever Vaccination. WHO, Geneva, p. 143

    Google Scholar 

  • Tauraso NM, Spector SL, Jahnes WG et al (1968) Yellow fever vaccine: I. Development of a vaccine seed free from contaminating avian leukosis viruses. Proc Soc Exp Biol Med 127:1116–1120

    CAS  PubMed  Google Scholar 

  • Theiler M (1930a) Susceptibility of white mice to yellow fever virus. Science 71:367

    Article  CAS  PubMed  Google Scholar 

  • Theiler M (1930b). Studies on action of yellow fever virus in mice. Ann Trop Med Parasitol 24:249–272

    Google Scholar 

  • Theiler M (1951) The virus. In: Strode GK (ed) Yellow fever. McGraw Hill, New York

    Google Scholar 

  • Theiler M, Sellards AW (1928) The immunological relationship of yellow fever as it occurs in West Africa and in South America. Ann Trop Med Parasitol 22:449–460

    Google Scholar 

  • Theiler M, Smith HH (1936) Use of hyperimmune monkey serum in human vaccination against yellow fever. Bull Off Int Hyg Public 28:2354–2357

    Google Scholar 

  • Theiler M, Smith HH (1937) The use of yellow fever virus modified by in vitro cultivation for human immunization. J Exp Med 65:787–800

    Article  CAS  PubMed  Google Scholar 

  • United Nations Relief and Rehabilitation Administration (UNRRA) (1945) Standards for the manufacture and control of yellow fever vaccine. Epidem Inform Bull 1:365–368 (original standards for the vaccine developed by the, according to Article XI of the International Sanitary Convention for Aerial Navigation)

    Google Scholar 

  • Vasconcelos PF, Luna EJ, Galler R et al (2001) Serious adverse events associated with yellow fever 17DD vaccine in Brazil: a report of two cases. Lancet 358(9276):91–97

    Article  CAS  PubMed  Google Scholar 

  • Warren AJ (1951) Landmarks in the conquest of yellow fever. In: Strode GK (ed) Yellow fever. McGraw Hill, New York

    Google Scholar 

  • Whitman L (1939) Failure of Aedes aegypti to transmit yellow fever cultured virus (17D). Am J Trop Med 19:19–26

    Google Scholar 

  • World Health Organization (1957) Requirements for biological substances No 3. Tech Rep Ser No 136, Annex 1

    Google Scholar 

  • World Health Organization (1987) Yellow fever vaccines: thermostability of freeze-dried vaccines. WHO Wkly Epidemiol Rep 62:181–183

    Google Scholar 

  • World Health Organization (1988) Requirements for yellow fever vaccine, Addendum 1987. WHO Tech Rep Ser No. 771, Annex 9, 208–209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Monath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Monath, T.P. (2010). Yellow Fever. In: Artenstein, A. (eds) Vaccines: A Biography. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1108-7_10

Download citation

Publish with us

Policies and ethics