Skip to main content

Plant Breeding Under a Changing Climate

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

Definition of the Subject

The next generation of crops, capable of being productive in an increasingly variable and changing climate, will rely on genetic interventions based on process understanding, selection of target traits in managed environments, and high-throughput phenotyping and genotyping more than ever before. This entry discusses examples from wheat and rice, recent advances in plant breeding for high yield potential environments, and also those where abiotic stress is a major limitation to productivity. The methodologies and lessons learnt are discussed in the context of breeding in the face of climate change .

Introduction

The effects of climate change on agricultural production and food security are already taking place, creating new challenges for plant breeders to act quickly. The consequences of climate change on agricultural systems across the globe will be heterogeneous [35]. The projections for 2050 indicate that the increase in temperature (1ā€“3Ā°C) and CO2...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Phenotyping:

The activity of measuring the physiological, morphological, developmental, and chemical characteristics of plants.

Trait:

A measurable phenotypic character or attribute, for example, plant height.

Bibliography

Primary Literature

  1. Allan RE (1989) Agronomic comparisons between Rht1 and Rht2 semi-dwarf genes in winter wheat. Crop Sci 29:1103ā€“1108

    ArticleĀ  Google ScholarĀ 

  2. Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343ā€“351

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Babar MA, van Ginkel M, Reynolds MP, Prasad B, Klatt AR (2007) Heritability, correlated response, and indirect selection involving spectral reflectance indices and grain yield in wheat. Aust J Agric Res 58:432ā€“442

    ArticleĀ  Google ScholarĀ 

  4. Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11ā€“38

    CASĀ  Google ScholarĀ 

  5. Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Patterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145ā€“162

    Google ScholarĀ 

  6. Bidinger F, Musgrave RB, Fischer RA (1977) Contribution of stored pre-anthesis assimilates to grain yield in wheat and barley. Nature 270:431ā€“433

    ArticleĀ  Google ScholarĀ 

  7. Blum A, Sinmena B, Mayer J, Golan G, Shpiler L (1994) Stem reserve mobilisation supports wheat-grain filling under heat stress. Aust J Plant Physiol 21:771ā€“781

    ArticleĀ  Google ScholarĀ 

  8. Blum A (1998) Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 100:77ā€“83

    ArticleĀ  Google ScholarĀ 

  9. Brar D, Virk P (2010) How a modern rice variety is bred. Rice Today 9(Janā€“March):11ā€“12

    Google ScholarĀ 

  10. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 161(2):1165ā€“1177

    Google ScholarĀ 

  11. Bueno CS, Lafarge T (2009) Higher crop performance of rice hybrids than elite inbreds in the tropics. 1. Hybrids accumulate more biomass during each phenological phase. Field Crops Res 112:229ā€“237

    ArticleĀ  Google ScholarĀ 

  12. Bueno CS, Pasuquin E, Tubana B, Lafarge T (2010) Improving sink regulation, and searching for promising traits associated with hybrids, as a key avenue to increase potential of the rice crop in the tropics. Field Crops Res 118:199ā€“207

    ArticleĀ  Google ScholarĀ 

  13. Chapman SC (2008) Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding trials. Euphytica 161:191ā€“208

    ArticleĀ  Google ScholarĀ 

  14. Chapman SC, Cooper M, Podlich D, Hammer GL (2003) Evaluating plant breeding strategies by simulating gene action and dryland environments. Agron J 95:99ā€“113

    ArticleĀ  Google ScholarĀ 

  15. Chenu K, Cooper M, Hammer GL, Mathews KL, Dreccer MF, Chapman SC (2011) Environment characterisation as an aid to wheat improvement ā€“ interpreting genotype-environment interaction by modelling water-deficit patterns in north eastern Australia. J Exp Bot 62:1743ā€“1755

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Comstock RE (1977) Quantitative genetics and the design of breeding programs. In: Proceedings of the international conference on quantitative genetics. Iowa State University Press, Ames, 16ā€“21 Aug 1976, pp 705ā€“718

    Google ScholarĀ 

  17. Condon AG, Reynolds MP, Rebetzke GJ, Ginkel M van, Richards RA, Farquhar GD (2007) Using stomatal aperture-related traits to select for high yield potential in bread wheat. In: Wheat production in stressed environments. Proceedings of the 7th international wheat conference, Mar del Plata, 27 Novā€“2 Dec 2005, pp 617ā€“624

    ChapterĀ  Google ScholarĀ 

  18. Dreccer MF, Chapman SC, Ogbonnaya FC, Borgognone MG, Trethowan RM (2008) Crop and environmental attributes underpinning genotype by environment interaction in synthetic bread wheats evaluated in Mexico and Australia. Aust J Agric Res 59:447ā€“460

    ArticleĀ  Google ScholarĀ 

  19. Dreisigacker S, Kishii M, Lage J, Warburton M, Ogbonnaya FC, van Ginkel M, Brettell R (2008) Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aust J Agric Res 59(5):413ā€“420

    ArticleĀ  Google ScholarĀ 

  20. El-Bouhssini M, Street K, Joubi A, Ibrahim Z, Rihawi F (2009) Sources of wheat resistance to Sunn pest, Eurygaster integriceps Puton, in Syria. Genet Resour Crop Evol 56:1065ā€“1069

    ArticleĀ  Google ScholarĀ 

  21. El-Bouhssini M, Street K, Amri A, Mackay M, Ogbonnaya FC, Omran A, Abdalla O, Baum M, Dabbous A, Rihawi F (2011) Sources of resistance in bread wheat to Russian wheat aphid (Diuraphis noxia) in Syria identified using the Focused Identification of Germplasm Strategy (FIGS). Plant Breeding 130:96ā€“97

    ArticleĀ  Google ScholarĀ 

  22. Ellis MH, Rebetzke GJ, Chandler P, Bonnett DG, Spielmeyer W, Richards RA (2004) The effect of different height reducing genes on early growth characteristics of wheat. Funct Plant Biol 31:583ā€“589

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. FAO (2010) The state of food insecurity in the world. Chief publishing policy and support branch office of knowledge exchange, research and extension FAO, Rome, p57

    Google ScholarĀ 

  24. FAO (2010) FAO Statistical yearbook 2010. Economic and social development department, FAO, Rome

    Google ScholarĀ 

  25. Fischer RA, Rees D, Sayre KD, Lu Z-M, Condon AG, Saavedra AL (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate and cooler canopies. Crop Sci 38:1467ā€“1475

    ArticleĀ  Google ScholarĀ 

  26. Fitzgerald GJ, Rodriguez D, Christensen LK, Belford R, Sadras VO, Clarke TR (2006) Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precision Agric 7:233ā€“248

    ArticleĀ  Google ScholarĀ 

  27. Fitzgerald MA, McCough SR, Hall RD (2009) Not just a grain of rice: the quest for quality. Trends Plant Sci 14:133ā€“139

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Gregory PJ, Bengough AG, Grinev D, Schmidt S, Thomas WTB, Wojciechowski T, Young IM (2009) Root phenomics of crops: opportunities and challenges. Funct Plant Biol 36:922ā€“929

    ArticleĀ  Google ScholarĀ 

  29. Guan YS, Serraj R, Liu SH, Xu JL, Ali J, Wang WS, Venus E, Zhu LH, Li ZK (2010) Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza sativa L.). J Exp Bot 61:4145ā€“4156

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1ā€“12

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681ā€“1690

    ArticleĀ  Google ScholarĀ 

  32. Hennessy KJ, Whetton PH, Preston B et al (2010) Climate projections. In: Stokes C, Howden M (eds) Adapting agriculture to climate change-preparing Australian agriculture, forestry and fisheries for the future. CSIRO Publishing, Collingwood, pp 21ā€“48

    Google ScholarĀ 

  33. Howden SM, Gifford RG, Meinke H (2010) Grains. In: Stokes C, Howden M (eds) Adapting agriculture to climate change-preparing Australian agriculture, forestry and fisheries for the future. CSIRO Publishing, Collingwood, pp 21ā€“48

    Google ScholarĀ 

  34. Horie T, Shiraiwa T, Homma K, Katsura K, Maeda S, Yoshida H (2005) Can yields of low land rice resume the increases that they showed in the 1980s? Plant Prod Sci 8:259ā€“274

    ArticleĀ  Google ScholarĀ 

  35. IPCC (2007) Climate change 2007: impacts, adaptation, and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google ScholarĀ 

  36. Jagadish SVK, Craufurd PQ, Wheeler TR (2007) High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot 58:1627ā€“1635

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Ji XM, Shiran B, Wan JL, Lewis DC, Jenkins CLD, Condon AG, Richards RA, Dolferus R (2010) Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ 33:926ā€“942

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267ā€“288

    ArticleĀ  Google ScholarĀ 

  39. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Lafarge T, Bueno CS (2009) Higher crop performance of rice hybrids than elite inbreds in the tropics. 2. Does sink regulation, rather than sink size, play a major role? Field Crops Res 114:434ā€“440

    ArticleĀ  Google ScholarĀ 

  41. Lafarge T, Bueno C, Pasuquin E, Wiangsamut B (2009) Biomass accumulation and sink regulation in hybrid rice: consequences for breeding programs and crop management. In: Xie F, Hardy B (eds) Accelerating hybrid rice development. International Rice Research Institute, Los BaƱos, p 698. Invited oral presentation, international symposium on hybrid rice, Changsha, Hunan, 11ā€“15 Sept 2008, pp 453ā€“474

    Google ScholarĀ 

  42. Li Y, Ye W, Wang M, Yan X (2009) Climate change and drought: a risk assessment of crop-yield impacts. Clim Res 39:31ā€“46

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819ā€“1829

    CASĀ  Google ScholarĀ 

  44. Mitchell PL, Sheehy JE (2000) Performance of a potential C4 rice: overview from quantum yield to grain yield. Stud Plant Sci 7:145ā€“163

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Montes M, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12:433ā€“436

    ArticleĀ  CASĀ  Google ScholarĀ 

  46. Oā€™Brien L (1982) Victorian wheat yield trends, 1898ā€“1977. J Aust Inst Agric Sci 48:162ā€“168

    Google ScholarĀ 

  47. Palta JA, Kobata T, Turner NC (1994) Carbon and nitrogen in wheat as influenced by postanthesis water deficits. Crop Sci 34:118ā€“124

    ArticleĀ  Google ScholarĀ 

  48. PeƱuelas J, Fillela Y (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci 3:151ā€“156

    ArticleĀ  Google ScholarĀ 

  49. Peng S, Cassman KG, Virmani SS, Sheehy J, Khush GC (1999) Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci 39:1552ā€“1559

    ArticleĀ  Google ScholarĀ 

  50. Peng S, Yang J, Laza MRC, Sanico A, Visperas RM, Son TT (2003) Physiological bases of heterosis and crop management strategies for hybrid rice in the tropics. In: Virmani SS, Mao CX, Hardy B (eds) Hybrid rice for food security, poverty alleviation, and environmental protection. Proceedings of the 4th international symposium on hybrid rice, 14ā€“17 May 2002, Hanoi. IRRI, Los BaƱos, pp 153ā€“170

    Google ScholarĀ 

  51. Peng S, Kush GS, Virk P, Tang Q, Zhu Y (2008) Progress in ideotype breeding to increase rice wheat consortium. Field Crops Res 108:32ā€“38

    ArticleĀ  Google ScholarĀ 

  52. Perry MW, Dā€™Antuono MF (1989) Yield improvement and associated characteristics of some Australian spring wheat cultivars introduced between 1860 and 1982. Aust J Agric Res 40:457ā€“472

    Google ScholarĀ 

  53. Pinter PJ, Hatfield JL, Schepers JS, Barnes EM, Moran MS, Daughtry CST, Upchurch DR (2003) Remote sensing for crop management. Photogram Eng Rem S 69:647ā€“664

    Google ScholarĀ 

  54. Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001ā€“1021

    ArticleĀ  Google ScholarĀ 

  55. Plant Varieties Journal (2002) Official Journal of Plant Breederā€™s Rights Australia, 15(1):74

    Google ScholarĀ 

  56. Plant Varieties Journal (2004) Official Journal of Plant Breederā€™s Rights Australia, 17(2):254ā€“261

    Google ScholarĀ 

  57. Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go: an effective approach for marker-assisted selection of complex traits. Crop Sci 44:1560ā€“1571

    ArticleĀ  Google ScholarĀ 

  58. Rebetzke GJ, Richards RA, Fischer VM, Mickelson BJ (1999) Breeding long coleoptile, reduced height wheats. Euphytica 106:159ā€“168

    ArticleĀ  Google ScholarĀ 

  59. Rebetzke GJ, Ellis MH, Bonnett DG, Richards RA (2007) Molecular mapping of genes for coleoptile growth in bread wheat. Theor Appl Genet 114:1173ā€“1183

    ArticleĀ  CASĀ  Google ScholarĀ 

  60. Rebetzke GJ, van Herwaarden AF, Jenkins C, Weiss M, Lewis D, Ruuska S, Tabe L, Fettell N, Richards RA (2008) Quantitative trait loci for soluble stem carbohydrate production in wheat. Aust J Agric Res 59:891ā€“905

    ArticleĀ  CASĀ  Google ScholarĀ 

  61. Reynolds MP, Mujeeb-Kazi A, Sawkins M (2005) Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought & salinity-prone environments. Ann Appl Biol 146:239

    ArticleĀ  CASĀ  Google ScholarĀ 

  62. Reynolds MP, Dreccer MF, Trethowan R (2007) Drought adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177ā€“186

    ArticleĀ  CASĀ  Google ScholarĀ 

  63. Reynolds MP, Manes Y, Izanloo A, Langridge P (2009) Phenotyping for physiological breeding and gene discovery in wheat. Ann Appl Biol 155:309ā€“20

    ArticleĀ  Google ScholarĀ 

  64. Reynolds MP, Hays D, Chapman S (2010) Breeding for adaptation to heat and drought stress. In: Reynolds MP (ed) Climate change and crop production. CAB International, Wallingford, pp 71ā€“91

    ChapterĀ  Google ScholarĀ 

  65. Richards RA, Rebetzke GJ, Condon AG, van Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111ā€“121

    ArticleĀ  Google ScholarĀ 

  66. Rosenzweig C (2009) Climate change and agriculture. In: Meyers RA (ed) Encyclopedia of complexity and systems science., pp 1071ā€“1082. doi:10.1007/978-0-387-30440-3_70, Part 3

    Google ScholarĀ 

  67. Semenov MA, Halford NG (2009) Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. J Exp Bot 60:2791ā€“2804

    ArticleĀ  CASĀ  Google ScholarĀ 

  68. Sheehy JE, Ferrer AB, Mitchell PL, Elmido-Mabilangan A, Pablico P, Dionora MJA (2008) How the rice crop works and why it needs a new engine. In: Sheehy JE, Mitchell PL, Hardy B (eds) Charting new pathways to C4 rice. Proceedings of the international workshop, IRRI, Los BaƱos, pp 3ā€“26

    ChapterĀ  Google ScholarĀ 

  69. Swaminathan MS (2007) Science and shaping the future of rice. In: Aggarwal PK, Ladha JK, Singh RK, Devakumar C, Hardy B (eds) Science, technology, and trade for peace and prosperity. Proceedings of the 26th international rice research conference, 9ā€“12 Oct 2006, New Delhi, pp 3ā€“14

    Google ScholarĀ 

  70. Trethowan RM, Reynolds MP, Sayre KD, Ortiz-Monasterio I (2005) Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann Appl Biol 146:404ā€“413

    ArticleĀ  Google ScholarĀ 

  71. Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255ā€“1265

    ArticleĀ  Google ScholarĀ 

  72. Sinclair TR, Purcell LC, Sneller CH (2004) Crop transformation and the challenge to increase yield potential. Trends Plant Sci 9:70ā€“75

    ArticleĀ  CASĀ  Google ScholarĀ 

  73. Sinclair TR, Purcell LC (2005) Is a physiological perspective relevant in a ā€˜genocentricā€™ age? J Exp Bot 56:2777ā€“2782

    ArticleĀ  CASĀ  Google ScholarĀ 

  74. Sirault XRR, James RA, Furbank RTA (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct Plant Biol 36:970ā€“977

    ArticleĀ  CASĀ  Google ScholarĀ 

  75. Vandeleur RK, Gill GS (2004) The impact of plant breeding on the grain yield and competitive ability of wheat in Australia. Aust J Agric Res 55:855ā€“861

    ArticleĀ  Google ScholarĀ 

  76. Whan BR (1976) The association between coleoptile length and culm length in semi-dwarf and standard wheats. J Aust Inst Agric Sci 42:194ā€“196

    Google ScholarĀ 

  77. Wang J, Chapman SC, Bonnett DG, Rebetzke GJ (2009) Simultaneous selection of major and minor genes: use of QTL to increase selection efficiency of coleoptile length of wheat (Triticum aestivum L.). Theor Appl Genet 119:65ā€“74

    ArticleĀ  CASĀ  Google ScholarĀ 

  78. Wassmann R, Jagadish SVK, Heuer S, Ismail A, Redona E, Serraj R, Singh RK, Howell G, Pathak H, Sumfleth K (2009) Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Adv Agron 101:59ā€“122

    ArticleĀ  Google ScholarĀ 

  79. Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redona E, Singh RK, Heuer S (2009) Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:91ā€“133

    ArticleĀ  Google ScholarĀ 

  80. Yin X, Struik PC (2009) C3 and C4 photosynthesis models: an overview from the perspective of crop modelling. NJAS Wageningen J Life Sci 57:27ā€“38

    ArticleĀ  Google ScholarĀ 

  81. Dreccer MF, van Herwaarden AF, Chapman SC (2009) Grain number and grain weight in wheat lines contrasting for stems soluble carbohydrate concentration. Field Crops Res 112: 43ā€“54

    ArticleĀ  Google ScholarĀ 

  82. Wardlaw IF, Wrigley CW (1994) Heat tolerance in temperate cereals-an overview. Aust J Plant Phys 21:695ā€“703

    ArticleĀ  Google ScholarĀ 

  83. Hibberd JM, Sheehy JE, Langdale JA (2008) Using C-4 photosynthesis to increase the yield of rice - rationale and feasibility. Current opinion Plant Biol 11:228ā€“231

    ArticleĀ  CASĀ  Google ScholarĀ 

  84. Furbank RT, von Caemmerer S, Sheehy JE, Edwards G (2009) C(4) rice: a challnege for plant phenomics. Funct Plant Biol 36:970ā€“977

    ArticleĀ  Google ScholarĀ 

  85. Pinter PJ, Jr, Zipoli G, Reginato RJ, Jackson RD, Idso SB, Hohman JP (1990) Canopy temperature as an indicator of differential water use and yield performance among wheat cultivars. Agric Water Management 18:35ā€“48

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgments

The authors thank Lynne McIntyre (CSIRO) and Andrzej Kilian (DArTs Pty Ltd) for contributing illustrations on genotyping. FD acknowledges the financial support of the Department of Agriculture, Fisheries and Forestry, CSIRO and the Climate Adaptation Flagship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fernanda Dreccer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Dreccer, M.F., Bonnett, D., Lafarge, T. (2012). Plant Breeding Under a Changing Climate . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_307

Download citation

Publish with us

Policies and ethics