Skip to main content

Polymer Electrolyte Membrane Fuel Cells (PEM-FC) and Non-noble Metal Catalysts for Oxygen Reduction

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

Definition of the Subject

More efficient energy conversion systems may help to reduce the use of fossil fuels and the emission of greenhouse gases. Polymer Electrolyte Membrane Fuel Cells are such devices which are of particular interest for automotive applications. Unfortunately, cost issues are still limiting the application of this technology in a highly competitive market. An important part of this is the inherently high cost of platinum which is commonly used as electrocatalyst. But recently, the replacement of platinum by NNMC has come into the focus of reach. The most promising approaches – comprising the use of crystalline phases and catalysts with molecular active centers – are described in this entry; limitations of both classes of materials are discussed.

Introduction

Although platinum and platinum alloys are the state-of-the-art electrocatalysts for PEM fuel cell applications, the platinum...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

R(R)DE:

Rotating (Ring) Disk Electrode. This technique is an electrochemical standard method; in this work, the measurements are performed to determine the catalytic activity towards the oxygen reduction in liquid oxygen–saturated electrolytes. Depending on the rotation rate, the diffusion-limited current changes. Measurements at different rotation rates enable the calculation of the kinetic current by using the Koutecky-Levich equation.

Fe-N-C catalyst:

Group of catalysts for which it is believed that molecular FeN4- or FeN2+2-centers are responsible for the reduction of oxygen.

Macrocycle:

Complex, organic molecule; in the context of this report, usually porphyrins, phthalocyanines, tetraazaannulenes, i.e., characterized by a tetrapyrrole core.

NNMC:

Non-noble metal catalysts: Catalysts prepared without any noble metals. As a result, the fabrication costs of such materials should be essentially lower as all basic-components are cheap.

ORR:

Oxygen Reduction Reaction. In this contribution, it stands for the electrochemical reduction of oxygen. The favored pathway is the direct reduction to water whereas the indirect pathway via the formation of peroxides is undesirable for fuel cell application.

Pyrochelates:

Macrocycles which were heat-treated (T > 300°C). During pyrolysis, the initial molecular structure is transferred into a carbon matrix. As also some fractions of the molecular centers of the precursor are preserved, the resulting product is sometimes assigned as pyrochelate.

Site density (SD):

Number of active sites per volume of catalyst. For the calculation of site densities of Me-N-C catalysts, often two assumptions have to be made: (1) the density is similar to other carbon-based catalysts (0.4 g/cm3) and (2) each metal atom is related to an active site. In some cases, authors determine the exact mass density and/or number of active sites, so that the value becomes more accurate. In all other cases, it is usually overestimated as not all metal atoms are associated with active sites.

Transition metal chalcogenides:

A chemical compound which is composed of at least one chalcogen (O, S, Se, Te) anion and one or more transition metal cations.

Turnover frequency (TOF):

The TOF gives the number of electrons which are transferred from the active site per site and second. Similar to the site density also here often assumptions have to be made.

Bibliography

  1. Markovic NM, Radmilovic V, Ross PN (2003) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker, New York/Basel

    Google Scholar 

  2. Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357:201–224

    Article  CAS  Google Scholar 

  3. Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on non-noble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109:22701–22704

    Article  CAS  Google Scholar 

  4. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128:8813–8819

    Article  CAS  Google Scholar 

  5. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core – shell fuel cell catalysts. Nat Chem 2:454–460

    Article  CAS  Google Scholar 

  6. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262

    Article  CAS  Google Scholar 

  7. Zhang S, Yuan XZ, Hin JC, Wang H, Friedrich KA, Schulze M (2009) A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J Power Sources 194:588–600

    Article  CAS  Google Scholar 

  8. Mayrhofer KJJ, Meier JC, Ashton SJ, Wiberg GKH, Kraus F, Hanzlik M, Arenz M (2008) Fuel cell catalyst degradation on the nanoscale. Electrochem Commun 10:1144–1147

    Article  CAS  Google Scholar 

  9. Delacote C, Bonakdarpour A, Johnston CM, Zelenay P, Wieckowski A (2008) Aqueous-based synthesis of ruthenium – selenium catalyst for oxygen reduction reaction. Faraday Discuss 140:269–281

    Article  CAS  Google Scholar 

  10. Fiechter S, Dorbandt I, Bogdanoff P, Zehl G, Schulenburg H, Tributsch H, Bron M, Radnik J, Fieber-Erdmann M (2007) Surface modified ruthenium nanoparticles: structural investigation and surface analysis of a novel catalyst for oxygen reduction. J Phys Chem C 111:477–487

    Article  CAS  Google Scholar 

  11. Guinel MJF, Bonakdarpour A, Wang B, Babu PK, Ernst F, Ramaswamy N, Mukerjee S, Wieckowski A (2009) Carbon-supported, selenium-modified ruthenium – molybdenum catalysts for oxygen reduction in acidic media. ChemSusChem 2:658–664

    Article  CAS  Google Scholar 

  12. Haas S, Hoell A, Zehl G, Dorbandt I, Bogdanoff P, Fiechter S (2008) Structural investigation of carbon supported Ru-Se based catalysts using anomalous small angle X-ray scattering. ECS Trans 6:127–138

    Article  CAS  Google Scholar 

  13. Loponov KN, Kriventsov VV, Nagabhushana KS, Boennemann H, Kochubey DI, Savinova ER (2009) Combined in situ EXAFS and electrochemical investigation of the oxygen reduction reaction on unmodified and Se-modified Ru/C. Catal Today 147:260–269

    Article  CAS  Google Scholar 

  14. Zehl G, Schmithals G, Hoell A, Haas S, Hartnig C, Dorbandt I, Bogdanoff P, Fiechter S (2007) On the structure of carbon-supported selenium-modified ruthenium nanoparticles as electrocatalysts for oxygen reduction in fuel cells. Angew Chem Int Ed 46:7311–7314

    Article  CAS  Google Scholar 

  15. Cremers C, Scholz M, Seliger W, Racz A, Knechtel W, Rittmayr J, Grafwallner F, Peller H, Stimming U (2007) Developments for improved direct methanol fuel cell stacks for portable power. Fuel Cells 7:21–31

    Article  CAS  Google Scholar 

  16. Garsuch A, Michaud X, Böhme K, Wagner G, Dahn JR (2009) Fuel cell performance of templated Ru/Se/C-based catalysts. J Power Sources 189:1008–1011

    Article  CAS  Google Scholar 

  17. Whipple DT, Jayashree RS, Egas D, Alonso-Vante N, Kenis PJA (2009) Ruthenium cluster-like chalcogenide as a methanol tolerant cathode catalyst in air-breathing laminar flow fuel cells. Electrochim Acta 54:4384–4388

    Article  CAS  Google Scholar 

  18. Wippermann K, Richter B, Klafki K, Mergel J, Zehl G, Dorbandt I, Bogdanoff P, Fiechter S, Kaytakoglu S (2007) Carbon supported Ru – Se as methanol tolerant catalysts for DMFC cathodes part II: preparation and characterization of MEAs. J Appl Electrochem 37:1399–1411

    Article  CAS  Google Scholar 

  19. Lee J-W, Popov BN (2007) Ruthenium-based electrocatalysts for oxygen reduction reaction – a review. J Solid State Electrochem 11:1355–1364

    Article  CAS  Google Scholar 

  20. Zhang L, Zhang J, Wilkinson DP, Wang H (2006) Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J Power Sources 156:171–182

    Article  CAS  Google Scholar 

  21. Bennett LH, Cuthill JR, McAlister AJ, Erickson NE, Watson RE (1974) Electronic structure and catalytic behavior of tungsten carbide. Science 184:563–565

    Article  CAS  Google Scholar 

  22. Colton RJ, Huang JJ, Rabalais JW (1975) Electronic structure of tungsten carbide and its catalytic behavior. Chem Phys Lett 34:337–339

    Article  CAS  Google Scholar 

  23. Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181:547–549

    Article  CAS  Google Scholar 

  24. Ross PN Jr, Stonehart P (1975) Surface characterization of catalytically active tungsten carbide (WC). J Catal 39:298–301

    Article  CAS  Google Scholar 

  25. Binder H, Köhling A, Kuhn W, Lindner W, Sandstede G (1969) Tungsten carbide electrodes for fuel cells with acid electrolyte. Nature 224:1299–1300

    Article  CAS  Google Scholar 

  26. Bronoel G, Museux E, Leclercq G, Leclercq L, Tassin N (1991) Study of hydrogen oxidation on carbides. Electrochim Acta 36:1543–1547

    Article  Google Scholar 

  27. Machida K, Enyo M (1990) Preparation of WCx thin films by RF sputtering and their electrocatalytic property for anodic methanol oxidation. J Electrochem Soc 137:871–876

    Article  CAS  Google Scholar 

  28. Sokolsky DV, Palanker VS, Baybatyrov EN (1975) Electrochemical hydrogen reactions on tungsten carbide. Electrochim Acta 20:71–77

    Article  Google Scholar 

  29. Mazza F, Trassatti S (1963) Transition metal oxides as DMFC cathodes without platinum. J Electrochem Soc 110:847–849

    Article  CAS  Google Scholar 

  30. Lee K, Ishihara A, Mitsushima S, Kamiya N, Ota K (2004) Stability and electrocatalytic activity for oxygen reduction in WC + Ta catalyst. Electrochim Acta 49:3479–3485

    Article  CAS  Google Scholar 

  31. Bhattarai J, Akiyama E, Habazaki H, Kawashima A, Asami K, Hashimoto K (1998) The passivation behavior of sputter-deposited W-Ta alloys in 12 M HCl. Corros Sci 40:757–179

    Article  CAS  Google Scholar 

  32. Chou WJ, Yu GP, Huang JH (2003) Corrosion resistance of ZrN films on AISI 304 stainless steel substrate. Surf Coat Technol 167:59–67

    Article  CAS  Google Scholar 

  33. Zhong H, Zhang H, Liang Y, Zhang J, Wang M, Wang X (2007) A novel non-noble electrocatalyst for oxygen reduction in proton exchange membrane fuel cells. J Power Sources 164:572–577

    Article  CAS  Google Scholar 

  34. Zhong H, Zhang H, Liu G, Liang Y, Hu J, Yi B (2006) A novel non-noble electrocatalyst for PEM fuel cell based on molybdenum nitride. Electrochem Comm 8:707–712

    Article  CAS  Google Scholar 

  35. Atanasoski R (2007) Novel approach to non-precious metal catalysts. DOE hydrogen program FY2007 anual progress report 820–824

    Google Scholar 

  36. O´Neill DG, Atanasoski R, Schmoekel AK, Vernstrom GD, O´Brien DP, Jain M, Wood TE (2006) Vacuum deposited non-precious metal catalysts for PEM fuel-cells. Mater Matters 1:17–19

    Google Scholar 

  37. Blomquist J, Lang H, Larsson R, Widelöv A (1992) Pyrolysis behaviour of metalloporphyrins: part2: a Mössbauer study of pyrolysed FeIII tetraphenylporphyrin chloride. J Chem Soc Faraday Trans 88:2007–2011

    Article  CAS  Google Scholar 

  38. Bouwkamp-Wijnoltz AL, Visscher W, van Veen JAR, Boellaard E, van der Kraan AM, Tang SC (2002) On active-site heterogeneity in pyrolysed carbon-supported iron porphyrin catalysts for the electrochemical reduction of oxygen: an in situ Mössbauer study. J Phys Chem B 106:12993–13001

    Article  CAS  Google Scholar 

  39. Koslowski UI, Abs-Wurmbach I, Fiechter S, Bogdanoff P (2008) Nature of the catalytic centres of porphyrin based electrocatalysts for the ORR – A correlation of kinetic current density with the site density of Fe-N4 centres. J Phys Chem C 112:15356–15366

    Article  CAS  Google Scholar 

  40. Lefèvre M, Dodelet J-P, Bertrand P (2002) Molecular oxygen reduction in PEM fuel cells: evidence for the simultaneous presence of two active sites in Fe-based catalysts. J Phys Chem B 106:8705–8713

    Article  CAS  Google Scholar 

  41. van Veen JAR, van Baar JF, Kroese KJ (1981) Effect of heat treatment on the performance of carbon-supported transition-metal chelates in the electrochemical reduction of oxygen. J Chem Soc Faraday Trans 77:2827–2843

    Article  Google Scholar 

  42. van Veen JAR, Colijn HA, van Baar JF (1988) On the effect of a heat treatment on the structure of carbon-supported metalloporphyrins and phthalocyanines. Electrochim Acta 33:801–804

    Article  Google Scholar 

  43. Bradley Easton E, Bonakdarpour A, Dahn JR (2006) Fe-C-N oxygen reduction catalysts prepared by combinatorial sputter deposition. Electrochem Sol State Letts 9:A463–A567

    Article  CAS  Google Scholar 

  44. Liu Y, Ishihara A, Mitsushima S, Kamiya N, Ota K (2007) Transition metal oxides as DMFC cathodes without platinum. J Electrochem Soc 154:B664–B669

    Article  CAS  Google Scholar 

  45. Liu Y, Ishihara A, Mitsushima S, Ota K (2010) Influence of sputtering power on oxygen reduction reaction activity of zirconium oxides prepared by radio frequency reactive sputtering. Electrochim Acta 55:1239–1244

    Article  CAS  Google Scholar 

  46. Descorme C, Madier Y, Duprez D (2000) Infrared study of oxygen adsorption and activation on cerium – zirconium mixed oxides. J Catal 196:167–173

    Article  CAS  Google Scholar 

  47. Lisebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  Google Scholar 

  48. Witko M, Tokarz-Sobieraj R (2004) Surface oxygen in catalysts based on transition metal oxides: what can we learn from cluster DFT calculations? Catal Today 91–92:171–176

    Article  CAS  Google Scholar 

  49. Kim J-H, Ishihara A, Mitsushima S, Kamiya N, Ota K-I (2007) Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electrochim Acta 52:2492–2497

    Article  CAS  Google Scholar 

  50. Mentus SV (2004) Oxygen reduction on anodically formed titanium dioxide. Electrochim Acta 50:27–32

    Article  CAS  Google Scholar 

  51. Kudo A, Miseki YCSR (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  52. Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35–54

    Article  CAS  Google Scholar 

  53. Liu G, Zhang HM, Wang MR, Zhong HX, Chen J (2007) Preparation, characterization of ZrOxNy/C and its application in PEMFC as an electrocatalyst for oxygen reduction. J Power Sources 172:503–510

    Article  CAS  Google Scholar 

  54. Doi S, Ishihara A, Mitsushima S, Kamiya N, Ota K (2007) Zirconium-based compounds for cathode of polymer electrolyte fuel cell. J Electrochem Soc 154:B362–B369

    Article  CAS  Google Scholar 

  55. Ohgi Y, Ishihara A, Matsuzawa K, Mitsushima S, Ota K (2010) Zirconium oxide-based compound as new cathode without platinum group metals for PEFC. J Electrochem Soc 57:B885–B891

    Article  CAS  Google Scholar 

  56. Clouser SJ, Huang JC, Yeager E (1993) Temperature dependence of the tafel slope for oxygen reduction on platinum in concentrated phosphoric acid. J Appl Electrochem 23:597–605

    Article  CAS  Google Scholar 

  57. Ishihara A, Lee K, Doi S, Mitsushima S, Kamiya N, Hara M, Domen K, Fukuda K, Ota K (2005) Tantalum oxynitride for a novel cathode of PEFC. Electrochem Solid State Lett 8:A201–A203

    Article  CAS  Google Scholar 

  58. Imai H, Matsumoto M, Miyazaki T, Fujieda S, Ishihara A, Tamura M, Ota K (2010) Structural defects working as active oxygen-reduction sites in partially oxidized Ta-carbonitride core-shell particles probed by using surface-sensitive conversion-electron-yield X-ray absorption spectroscopy. App Phys Lett 96:191905

    Article  CAS  Google Scholar 

  59. Ohnishi R, Katayama M, Takanabe K, Kubota J, Domen K (2010) Niobium-based catalysts prepared by reactive radio-frequency magnetron sputtering and arc plasma methods as non-noble metal cathode catalysts for polymer electrolyte fuel cells. Electrochim Acta 55:5393–5400

    Article  CAS  Google Scholar 

  60. Takagaki A, Takahashi Y, Yin F, Takanabe K, Kubota J, Domen K (2009) Highly dispersed niobium catalyst on carbon black by polymerized complex method as PEFC cathode catalyst. J Electrochem Soc 156:B811–B815

    Article  CAS  Google Scholar 

  61. Jasinski R (1964) A new fuel cell cathode catalyst. Nature (Lond) 201:1212–1213

    Article  CAS  Google Scholar 

  62. Jahnke H, Schönborn M, Zimmermann G (1976) Organic dyestuffs as catalysts for fuel cells. Top Curr Chem 61:133–182

    Article  CAS  Google Scholar 

  63. Gupta SL, Tryk D, Bae I, Aldred W, Yeager EB (1989) Heat-treated polyacrylonitride-based catalysts for oxygen electroreduction. J Appl Electrochem 19:19–27

    Article  CAS  Google Scholar 

  64. Fierro C, Anderson AB, Scherson DA (1988) Electron donor-acceptor properties of porphyrines, phthalocyanines, and related ring-chelats: a molecular orbital approach. J Phys Chem 92:6902–6907

    Article  CAS  Google Scholar 

  65. Zagal JH (1992) Metallophthalocyanines as catalysts in electrochemical reactions. Coord Chem Rev 119:89–136

    Article  CAS  Google Scholar 

  66. Kobayashi N, Nishiyama Y (1984) Catalytic electroreduction of molecular oxygen at glassy carbon electrodes with immobilized iron porphyrins containing zero, one, or four amino groups. J Electroanal Chem 181:107–117

    Article  CAS  Google Scholar 

  67. van Veen JAR, Visser C (1979) Oxygen reduction on monomeric transition metal phthalocyanines in acid electrolyte. Electrochim Acta 24:921–928

    Article  Google Scholar 

  68. Melendres CA (1980) Mössbauer and Raman spectra of carbon-supported iron phthalocyanine. J Phys Chem 84:1936–1939

    Article  CAS  Google Scholar 

  69. Bagotzky VS, Tarasevich MR, Radyushkina KA, Levina OA, Andrusyova SI (1977–1978) Electrocatalysis of the oxygen reduction process on metal chelates in acid electrolyte. J Power Sources 2:233–240

    Article  Google Scholar 

  70. Beck F (1977) The redox mechanism of chelate-catalysed oxygen-cathode. J Appl Electrochem 7:239–245

    Article  CAS  Google Scholar 

  71. Blomquist J, Helgeson U, Moberg LC, Johansson LY, Larsson R (1982) Simultaneous electrochemical and Mössbauer measurements on polymeric iron phthalocyanine oxygen elctrodes. Electrochim Acta 27:1453–1460

    Article  CAS  Google Scholar 

  72. Brezina M, Khalil W, Koryta J, Musilová M (1977) Electroreduction of oxygen and hydrogen peroxide catalyzed by hemine and phthalocyanines. J Electroana Chem 77:237–244

    Article  CAS  Google Scholar 

  73. Johansson LY, Mrha J, Larsson R (1973) Elektrokatalyse der O2-Reduktion in saurer Lösung mit Hilfe der polymeren Phthalocyanine. Electrochim Acta 18:255–258

    Article  CAS  Google Scholar 

  74. Kazarinov VE, Tarasevich MR, Radyushkina KA, Andreev VN (1979) Some specific features of the metalloporphyrin/electrolyte interface and the kinetics of oxygen electroreduction. J Electroanal Chem 100:225–232

    Article  CAS  Google Scholar 

  75. Larsson R, Mrha J (1973) Katalytische Sauerstoffelektrode in sauren Lösungen. Electrochim Acta 18:391–394

    Article  CAS  Google Scholar 

  76. Maroie S, Savy M, Verbist JJ (1979) ESCA and EPR studies of monomer, dimer, and polymer iron phthalocyanines: involvements for the electrocatalysis of O2 reduction. Inorg Chem 18:2560–2567

    Article  CAS  Google Scholar 

  77. Zagal JH, Páez M, Tanaka AA, dos Santos JR, Linkous CA (1992) Electrocatalytic activity of metal phthalocyanines for oxygen reduction. J Electroanal Chem 339:13–30

    Article  CAS  Google Scholar 

  78. Zagal JH, Páez M, Silva JF (2006) Fundamental aspects on the catalytic activity of metallomacrocyclics for the electrochemical reduction of O2. In: Zagal JH, Bedioui F, Dodelet JP (eds) N4-macrocyclic metal complexes. Springer, New York, pp 41–82

    Chapter  Google Scholar 

  79. Yeager EB (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29:1527–1537

    Article  CAS  Google Scholar 

  80. Ohya T, Kobayashi N, Sato M (1987) Bonding character in tetracoordinate (phthalocyanato) iron(II) complexes with electron-withdrawing substituents as studied by Mößbauer spectroscopy. Inorg Chem 26:2506–2509

    Article  CAS  Google Scholar 

  81. Ohya T, Sato M (1997) Mössbauer and visible spectra of iron(III) complexes of para-substituted tetraphenylporphyrins - electronic effects of substituents and axial ligands. J Inorg Biochem 67:126, Abstract:126

    Article  CAS  Google Scholar 

  82. Schlosser K, Hoyer E, Arnold D (1974) Mößbauer Untersuchungen zur π-Rückbindung in Tris(1,2-diimin)eisen(II)chelaten. Spectrochim Acta 30:1431–1436

    Article  Google Scholar 

  83. Taube R (1974) New aspects of the chemistry of transition metal phthalocyanines. Pure Appl Chem 38:427–438

    Article  CAS  Google Scholar 

  84. Walker FA (2003) Pulsed EPR and NMR spectroscopy of paramagnetic iron porphyrinates and related iron macrocycles: how to understand patterns of spin delocalization and recognize macrocycle radicals. Inorg Chem 42:4526–4544

    Article  CAS  Google Scholar 

  85. Steiger B, Anson FC (1995) Evidence for the importance of back-bonding in determining the behavior of ruthenated cyanophenyl cobalt porphyrins as electrocatalysts for the reduction of dioxygen. Inorg Chem 34:3355–3357

    Article  CAS  Google Scholar 

  86. Zagal JH, Gulppi M, Isaacs M, Cárdenas-Jirón G, Aguirre MJ (1998) Linear versus volcano correlations between electrocatalytic activity and redox and electronic properties of metallophthalocyanines. Electrochim Acta 44:1349–1357

    Article  CAS  Google Scholar 

  87. Alt H, Binder H, Lindner W, Sandstede G (1971) Metal chelates as electrocatalysts for oxygen reduction in acid electrolytes. J Electroanal Chem 31:A19–A22

    Article  Google Scholar 

  88. Vasudevan P, Santosh MN, Tyagi S (1990) Transition metal complexes of porphyrins and phthalocyanines as electrocatalysts for dioxygen reduction. Transition Metal Chem Lond 15:81–90

    Article  CAS  Google Scholar 

  89. Kozawa A, Zilionis VE, Brodd RJ (1970) Oxygen and hydrogen peroxide reduction at a ferric phthalocyanine-catalyzed graphite electrode. J Electrochem Soc 117:1470–1474

    Article  CAS  Google Scholar 

  90. Okunola A, Kowalewska B, Bron M, Kulesza PJ, Schuhmann W (2009) Electrocatalytic reduction of oxygen at electropolymerized films of metalloporphyrins deposited onto multi-walled carbon nanotubes. Electrochim Acta 54:1954–1960

    Article  CAS  Google Scholar 

  91. Okunola AO, Nagaiah TC, Chen X, Eckhard K, Schuhmann W, Bron M (2009) Visualization of local electrocatalytic activity of metalloporphyrins towards oxygen reduction by means of redox competition scanning electrochemical microscopy (RC-SECM). Electrochim Acta 54:4971–4978

    Article  CAS  Google Scholar 

  92. Collman JP, Denisevich P, Konai Y, Marrocco M, Koval C, Anson FC (1980) Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Am Chem Soc 102:6027–6036

    Article  CAS  Google Scholar 

  93. Biloul A, Coowar F, Contamin O, Scarbeck G, Savy M, van den Ham D, Riga J, Verbist JJ (1993) Oxygen reduction in an acid medium: Electrocatalysis by CoNPc(1,2)-bilayer impregnated on a carbon black support: effect of loading and heat treatment. J Electroanal Chem 350:189–204

    Article  CAS  Google Scholar 

  94. Collman JP, Wagenknecht PS, Hutchison JE (1994) Cofaciale Bis(metallo)diporphyrine als potentielle molekulare Katalysatoren für Mehrelektronenreduktionen und -oxidationen kleiner Moleküle. Angew Chem 106:1620–1639

    Article  CAS  Google Scholar 

  95. Liu HY, Weaver MJ, Wang C-B, Chang CK (1983) Dependence of electrocatalysis for oxygen reduction by adsorbed dicobalt cofacial porphyrins upon catalyst structure. J Electroanal Chem 145:439–447

    Article  CAS  Google Scholar 

  96. Biloul A, Contamin O, Scarbeck G, Savy M, Palys B, Riga J, Verbist JJ (1994) Oxygen reduction in acid media: influence of the activity of conpc(1,2)-bilayer deposits in relation to their attachment to the carbon black support and role of surface groups as a function of heat treatment. J Electroanal Chem 365:239–246

    Article  CAS  Google Scholar 

  97. Tributsch H, Koslowski U, Dorbandt I (2008) Experimental and theoretical modeling of Fe-, Co-, Cu-, Mn based electrocatalysts oxygen reduction. Electrochim Acta 53:2198–2209

    Article  CAS  Google Scholar 

  98. Wiesener K, Ohms D, Neumann V, Franke R (1989) N4 Macrocycles as electrocatalysts for the cathodic reduction of oxygen. Mater Chem Phys 22:457–475

    Article  CAS  Google Scholar 

  99. Blomquist J, Helgeson U, Moberg LC, Johansson LY, Larsson R (1982) Electrochemical and Mössbauer investigations of polymeric iron phthalocyanine oxygen electrodes. Electrochim Acta 27:1445–1451

    Article  CAS  Google Scholar 

  100. Scherson DA, Fierro C, Tryk D, Gupta SL, Yeager EB, Eldridge J, Hoffman RW (1985) In situ Mössbauer spectroscopy and electrochemical studies of the thermal stability of iron phthalocyanine dispersed in high surface area carbon. J Electroanal Chem 184:419–426

    Article  CAS  Google Scholar 

  101. Scherson DA, Fierro C, Yeager EB, Kordesch ME, Eldridge J, Hoffman RW, Barnes A (1984) In situ Mössbauer spectroscopy on an operating fuel cell. J Electroanal Chem 169:287–302

    Article  CAS  Google Scholar 

  102. Wiesener K (1986) N4 chelates as electrocatalysts for the cathodic oxygen reduction. Electrochim Acta 31:1073–1078

    Article  CAS  Google Scholar 

  103. Tanaka AA, Fierro C, Scherson DA, Yeager EB (1989) Oxygen reduction on adsorbed iron tetrapyridinoporphyrazine. Mater Chem Phys 22:431–456

    Article  CAS  Google Scholar 

  104. Tarasevich MR, Radyushkina KA (1989) Pyropolymers of N4-complexes: structure and electrocatalytic properties. Mater Chem Phys 22:477–502

    Article  CAS  Google Scholar 

  105. Franke R, Ohms D, Wiesener K (1989) Investigation of the influence of thermal treatment on the properties of carbon materials modified by N4-chelates for the reduction of oxygen in acidic media. J Electroanal Chem 260:63–73

    Article  CAS  Google Scholar 

  106. Joyner RW, van Veen JAR, Sachtler WMH (1982) Extended X-ray absorption fine structure (EXAFS) study of cobalt-porphyrin catalysts supported on active carbon. J Chem Soc Farraday Trans 78:1021–1028

    Article  CAS  Google Scholar 

  107. Saha MS, Li R, Sun X, Ye S (2009) 3-D composite electrodes for high performance PEM fuel cells composed of Pt supported on nitrogen-doped carbon nanotubes grown on carbon paper. Electrochem Commun 11:438–441

    Article  CAS  Google Scholar 

  108. Biniak S, Szymanski G, Siedlewski J, Swiatkowski A (1997) The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35:1799–1810

    Article  CAS  Google Scholar 

  109. Lacerda M, Lejeune M, Jones BJ, Barklie RC, Bouzerar R, Zellama K, Conway NMJ, Godet C (2002) Electronic properties of amorphous carbon nitride a-C1-xNx:H films investigated using vibrational and ESR characterisations. J NonCryst Solids 299–302:907–911

    Article  Google Scholar 

  110. Chen Y, Wang J, Liu H, Li R, Sun X, Ye S, Knights S (2009) Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells. Electrochem Commun 11:2071–2076

    Article  CAS  Google Scholar 

  111. Strelko VV, Kuts VS, Thrower PA (2000) On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon 38:1499–1503

    Article  CAS  Google Scholar 

  112. Kramm UI (2009) Strukturelle Untersuchungen alternativer Katalysatoren für die PEM-BZ – Eine Fe-57-Mößbauerspektroskopische Studie pyrolysierter Eisenporphyrin-Elektrokatalysatoren. Saarbrücken, Südwestdeutscher Verlag für Hochschulschriften

    Google Scholar 

  113. Biddinger EJ, Ozkan US (2007) Methanol tolerance of CNx oxygen reduction catalysts. Top Catal 46:339–348

    Article  CAS  Google Scholar 

  114. Kothandaraman R, Nallathambi V, Artyushkova K, Barton SC (2009) Non-precious oxygen reduction catalysts prepared by high-pressure pyrolysis for low-temperature fuel cells. Appl Catal B 92:209–216

    Article  CAS  Google Scholar 

  115. Liu G, Li X, Ganesan P, Popov BN (2010) Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochim Acta 55:2853–2858

    Article  CAS  Google Scholar 

  116. Maldonado S, Stevenson KJ (2005) Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber. J Phys Chem B 109:4707–4716

    Article  CAS  Google Scholar 

  117. Matter PH, Biddinger EJ, Ozkan US (2007) Non-precious metal oxygen reduction catalysts for PEM fuel cells. Catalysis 30:338–366

    Article  CAS  Google Scholar 

  118. Matter PH, Wang E, Millet J-M, Ozkan US (2007) Characterization of the iron phase in CNx-based oxygen reduction reaction catalysts. J Phys Chem C 111:1444–1450

    Article  CAS  Google Scholar 

  119. Nallathambi V, Li X, Lee J-W, Popov BN (2008) Developement of nitrogen-modified carbon-based catalysts for oxygen reduction in PEM fuel cells. ECS Trans 16:405–417

    Article  CAS  Google Scholar 

  120. Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP, Popov BN (2006) O2 reduction on graphite and nitrogen-doped graphite: experimental and theory. J Phys Chem B 110:1787–1793

    Article  CAS  Google Scholar 

  121. Fischer A, Antonietti M, Thomas A (2007) Growth confined by the nitrogen source: synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride. Adv Mater Weinheim 19:264–267

    Article  CAS  Google Scholar 

  122. Lyth SM, Nabae Y, Moriya S, Kuroki S, Kakimoto M-a, Ozaki J-i, Miyata S (2009) Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction. J Phys Chem C 113:20148–20151

    Article  CAS  Google Scholar 

  123. Lyth SM, Nabae Y, Islam NM, Kuroki S, Kakimoto M-a, Miyata S (2011) Electrochemical oxygen reduction activity of carbon nitride supported on carbon black. J Electrochem Soc 158:B194–B201

    Article  CAS  Google Scholar 

  124. Nabae Y, Moriya S, Matsubayashi K, Lyth SM, Malon M, Wu L, Islam NM, Koshigoe Y, Kuroki S, Kakimoto M-a, Ozaki K, Miyata S, Ozaki J-I (2010) The role of Fe species in the pyrolysis of Fe phthalocyanine and phenolic resin for preparation of carbon-based cathode catalysts. Carbon 48:2613–2624

    Article  CAS  Google Scholar 

  125. Plejewski P, Fiechter S (2011) Investigation of the oxygen reduction ability of different metal-free C/N-based materials, in preparation

    Google Scholar 

  126. Lalande G, Côté R, Guay D, Dodelet J-P, Weng LT, Bertrand P (1997) Is nitrogen important in the formulation of Fe-based catalysts for oxygen reduction in solid polymer fuel cells? Electrochim Acta 42:1379–1388

    Article  CAS  Google Scholar 

  127. Martinaiou I, Bogdanoff P, Fiechter S, Kramm UI (2011) Synthesis of nitrogen-rich Fe-N-C catalysts for the oxygen reduction in acidic media, in preparation

    Google Scholar 

  128. Scherson DA, Tanaka AA, Gupta GP, Tryk DA, Fierro C, Holze R, Yeager EB, Lattimer RP (1986) Transition metal macrocycles supported on high area carbon: pyrolysis-mass spectroscopy studies. Electrochim Acta 31:1247–1258

    Article  CAS  Google Scholar 

  129. Matter PH, Zhang L, Ozkan US (2006) The role of nanostructure in nitrogen-containing carbon catatlysts for the oxygen reduction reaction. J Catal 239:83–96

    Article  CAS  Google Scholar 

  130. Bogdanoff P, Herrmann I, Hilgendorff M, Dorbandt I, Fiechter S, Tributsch H (2004) Probing structural effects of pyrolysed CoTMPP-based electrocatalysts for oxygen reduction via new preparation strategies. J New Mat Elect Syst 7:85–92

    Google Scholar 

  131. Herrmann I, Bogdanoff P, Schmithals G, Fiechter S (2006) Influence of the molecular and mesoscopic structure on the electrocatalytic activity of pyrolysed CoTMPP in the oxygen reduction. ECS Trans 3:211–219

    CAS  Google Scholar 

  132. Herrmann I, Kramm UI, Fiechter S, Bogdanoff P (2009) Oxalate supported pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction reaction. Electrochim Acta 54:4275–4287

    Article  CAS  Google Scholar 

  133. Herrmann I, Kramm UI, Radnik J, Bogdanoff P, Fiechter S (2009) Influence of sulphur on the pyrolysis of CoTMPP as electrocatalyst for the oxygen reduction reaction. J Electrochem Soc 156:B1283–B1292

    Article  CAS  Google Scholar 

  134. Herrmann I, Barkschat C, Fiechter S, Bogdanoff P, Iwata N, Takahashi H (2007) Electrode catalyst for fuel cells, a method of preparing an electrode catalyst for fuel cells, and a polymer electrolyte fuel cell. Patent application number PCT/JP2007/074369

    Google Scholar 

  135. Kurak KA, Anderson AB (2009) Nitrogen-treated graphite and oxygen electroreduction on pyridinic edge sites. J Phys Chem C 113:6730–6734

    Article  CAS  Google Scholar 

  136. Kramm UI, Abs-Wurmbach I, Herrmann-Geppert I, Radnik J, Fiechter S, Bogdanoff P (2011) Influence of the electron-density of FeN4-centers towards the catalytic activity of pyrolysed FeTMPPCl-based ORR-electrocatalysts. J Electrochem Soc 158:B69–B78

    Article  CAS  Google Scholar 

  137. Biloul A, Coowar F, Contamin O, Scarbeck G, Savy M, Van den Ham D, Riga J, Verbist JJ (1990) Oxygen reduction in acid media on supported iron naphthalocyanine – effect of isomer configuration and pyrolysis. J Electroanal Chem 289:189–201

    Article  CAS  Google Scholar 

  138. Bouwkamp-Wijnoltz AL, Visscher W, van Veen JAR (1998) The selectivity of oxygen reduction by pyrolysed iron porphyrin supported on carbon. Electrochim Acta 43:3141–3152

    Article  CAS  Google Scholar 

  139. Faubert G, Côté R, Guay D, Dodelet J-P, Dénès G, Bertrand P (1998) Iron catalysts prepared by high-temperature pyrolysis of tetraphenylporphyrins in polymer electrolyte fuel cells. Electrochim Acta 43:341–353

    Article  CAS  Google Scholar 

  140. Faubert G, Lalande G, Côté R, Guay D, Dodelet J-P, Weng LT, Bertrand P, Dénès G (1996) Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochim Acta 41:1689–1701

    Article  CAS  Google Scholar 

  141. Gojkovic SL, Gupta S, Savinell RF (1998) Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high area carbon as an electrocatalyst for oxygen reduction part I: characterization of the electrocatalyst. J Electrochem Soc 145:3493–3499

    Article  CAS  Google Scholar 

  142. Gojkovic SL, Gupta S, Savinell RF (1999) Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high area carbon as an electrocatalyst for oxygen reduction part II: kinetics of oxygen reduction. J Electroanal Chem 462:63–72

    Article  CAS  Google Scholar 

  143. Gojkovic SL, Gupta S, Savinell RF (1999) Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high area carbon as an electrocatalyst for oxygen reduction part III: detection of hydrogen-peroxide during oxygen reduction. Electrochim Acta 45:889–897

    Article  CAS  Google Scholar 

  144. Ikeda O, Fukuda H, Tamura H (1986) The effect of heat-treatment on group VIIIB porphyrins as electrocatalysts in the cathodic reduction of oxygen. J Chem Soc Farraday Trans 82:1561–1573

    Article  CAS  Google Scholar 

  145. Lalande G, Faubert G, Côté R, Guay D, Dodelet J-P, Weng LT, Bertrand P (1996) Catalytic activity and stability of heat-treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells. J Power Sources 61:227–237

    Article  CAS  Google Scholar 

  146. Savy M, Coowar F, Riga J, Verbist JJ, Bronoël G, Besse S (1990) Investigation of O2 reduction in alkaline media on macrocyclic chelates impregnated on different supports: influence of the heat treatment on stability and activity. J Appl Electrochem 20:260–268

    Article  CAS  Google Scholar 

  147. Sawaguchi T, Itabashi T, Matsue T, Uchida I (1990) Electrochemical reduction of oxygen by metalloporphyrin ion-complexes with heat-treatment. J Electroanal Chem 279:219–230

    Article  CAS  Google Scholar 

  148. Schulenburg H, Stankov S, Schünemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H (2003) Catalysts for the oxygen reduction from heat-treated iron(III) tetramethoxyphenylporphyrin chloride: structure and stability of active sites. J Phys Chem B 107:9034–9041

    Article  CAS  Google Scholar 

  149. Sheng T-C, Rebenstorf B, Widelöv A, Larsson R (1992) Pyrolysis of metalloporphyrins part 1: Fourier-transform infrared study of Fe-tetraphenylporphyrin chloride. J Chem Soc Faraday Trans 88:477–482

    Article  CAS  Google Scholar 

  150. Sun G-Q, Wang J-T, Gupta S, Savinell RF (2001) Iron(III) tetramethoxyphenylporphyrin (FeTMPP-Cl) as electrocatalyst for oxygen reduction in direct methanol fuel cells. J Appl Electrochem 31:1025–1031

    Article  CAS  Google Scholar 

  151. Sun G-Q, Wang J-T, Savinell RF (1998) Iron(III) tetramethoxyphenylporphyrin (FeTMPP) as methanol tolerant electrocatalyst for oxygen reduction in direct methanol fuel cells. J Appl Electrochem 28:1087–1093

    Article  CAS  Google Scholar 

  152. Wang H, Côté R, Faubert G, Guay D, Dodelet J-P (1999) Effect of the pre-treatment of carbon black supports on the activity of Fe-based electrocatalysts for the reduction of oxygen. J Phys Chem B 103:2042–2049

    Article  CAS  Google Scholar 

  153. Widelöv A (1993) Pyrolysis of iron and cobalt porphyrins sublimated onto the surface of carbon black as a method to prepare catalysts for O2 reduction. Electrochim Acta 38:2493–2502

    Article  Google Scholar 

  154. Lalande G, Côté R, Tamizhmani GD, Dodelet J-P, Dignard-Bailey L, Weng LT, Bertrand P (1995) Physical, chemical and electrochemical characterization of heat-treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer electrolyte fuel cells. Electrochim Acta 40:2635–2646

    Article  CAS  Google Scholar 

  155. Herrmann I, Brüser V, Fiechter S, Kersten H, Bogdanoff P (2005) Electrocatalysts for oxygen reduction prepared by plasma treatment of carbon-supported cobalt tetramethoxyphenylporphyrin. J Electrochem Soc 152:A2179–A2185

    Article  Google Scholar 

  156. Herrmann I, Kramm UI, Fiechter S, Brüser V, Kersten H, Bogdanoff P (2010) Comparative study of the carbonisation of CoTMPP by low temperature plasma and by heat-treatment. Plasma Process Polym 7:515–526

    Article  CAS  Google Scholar 

  157. Harnisch F, Savastenko NA, Zhao F, Steffen H, Brüser V, Schröder U (2009) Comparative study on the performance of pyrolyzed and plasma-treated iron(II) phthalocyanine-based catalysts for oxygen reduction in pH neutral electrolyte solutions. J Power Sources 193:86–92

    Article  CAS  Google Scholar 

  158. Atanassov P (2005) Non-platinum electrocatalysts for fuel cells. FC Techn, Aiche

    Google Scholar 

  159. Garsuch A, d’Eon R, Dahn T, Klepel O, Garsuch RR, Dahn JR (2008) Oxygen reduction behaviour of highly porous non-noble metal catalysts prepared by a template-assisted synthesis. J Electrochem Soc 155:B236–B243

    Article  CAS  Google Scholar 

  160. Jaouen F, Herranz J, Lefèvre M, Dodelet J-P, Kramm UI, Herrmann I, Bogdanoff P, Maruyama J, Nagaoka T, Garsuch A, Dahn JR, Olson TS, Pylypenko S, Atanassov P, Ustinov EA (2009) A cross-laboratory experimental review of non-noble-metal catalysts for oxygen electro-reduction. Appl Mater Interfaces 1:1623–1639

    Article  CAS  Google Scholar 

  161. Olson TS, Chapman K, Atanassov P (2008) Non-platinum cathode catalyst layer composition for single membrane electrode assembly proton exchange membrane fuel cell. J Power Sources 183:557–563

    Article  CAS  Google Scholar 

  162. Koslowski UI, Herrmann I, Bogdanoff P, Barkschat C, Fiechter S, Iwata N, Takahashi H, Nishikoro H (2008) Evaluation and analysis of PEM-FC performance using non-platinum cathode catalysts based on pyrolysed Fe- and Co-porphyrins – influence of a secondary heat-treatment. ECS Trans 13:125–141

    Article  CAS  Google Scholar 

  163. Kramm UI, Herrmann I, Fiechter S, Zehl G, Zizak I, Abs-Wurmbach I, Radnik J, Dorbandt I, Bogdanoff P (2009) On the influence of sulphur on the pyrolysis process of FeTMPP-Cl-based electro-catalysts with respect to oxygen reduction reaction (ORR) in acidic media. ECS Trans 25:659–670

    Article  CAS  Google Scholar 

  164. Maldonado S, Stevenson KJ (2004) Direct preparation of carbon nanofiber electrodes via pyrolysis of iron(II) phthalocyanine: electrocatalytic aspects for oxygen reduction. J Phys Chem B 108:11375–11383

    Article  CAS  Google Scholar 

  165. Lefèvre M, Proietti E, Jaouen F, Dodelet J-P (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71–74

    Article  CAS  Google Scholar 

  166. Wood TE, Tan Z, Schmoeckel AK, O’ Neill D, Atanasoski R (2008) Non-precious metal oxygen reduction catalyst for PEM fuel cells based on nitroaniline precursor. J Power Sources 178:510–516

    Article  CAS  Google Scholar 

  167. Kramm UI, Herrmann-Geppert I, Bogdanoff P, Abs-Wurmbach I, Fiechter S (2011) Effect of an ammonia treatment on the structural composition and ORR activity of Fe-N-C catalysts. J Phys Chem C, in preparation

    Google Scholar 

  168. Charreteur F, Jaouen F, Ruggeri S, Dodelet J-P (2008) Fe/N/C Non-precious catalysts for PEM fuel cells: influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochim Acta 53:2925–2938

    Article  CAS  Google Scholar 

  169. Charreteur F, Ruggeri S, Jaouen F, Dodelet J-P (2008) Increasing the activity of Fe/N/C catalysts in PEM fuel cell cathodes using carbon blacks with a high disordered carbon content. Electrochim Acta 53:6881–6889

    Article  CAS  Google Scholar 

  170. Dodelet J-P (2006) Oxygen reduction in PEM fuel cell conditions: heat-treated non-precious metal-N4 macrocycles and beyond. In: Zagal JH, Bedioui F, Dodelet JP (eds) N4-macrocyclic metal complexes: electrocatalysis,electrophotochemistry & biomimetic electroanalysis. Springer, New York, pp 83–147

    Google Scholar 

  171. Herranz J, Lefèvre M, Larouche N, Stansfield B, Dodelet J-P (2007) Step-by-step synthesis of non-noble metal electrocatalysts for O2 reduction under proton exchange membrane fuel cell conditions. J Phys Chem C 111:19033–19042

    Article  CAS  Google Scholar 

  172. Jaouen F, Dodelet J-P (2007) Turn-over frequency of O2 electro-reduction for Fe/N/C and Co/N/C catalysts in PEFCs. Electrochim Acta 52:5975–5984

    Article  CAS  Google Scholar 

  173. Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2006) Oxygen reduction reaction catalysts prepared from acetonitrile pyrolysis over alumina-supported metal particles. J Phys Chem B 110:18374–18384

    Article  CAS  Google Scholar 

  174. Bron M, Radnik J, Fieber-Erdmann M, Bogdanoff P, Fiechter S (2002) EXAFS, XPS and electrochemical studies on oxygen reduction catalysts obtained by heat treatment of iron phenanthroline complexes supported on high surface area carbon black. J Electroanal Chem 535:113–119

    Article  CAS  Google Scholar 

  175. Nallathambi V, Lee J-W, Kumaraguru SP, Wu G, Popov BN (2008) Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM proton exchange membrane fuel cells. J Power Sources 183:34–42

    Article  CAS  Google Scholar 

  176. Wu T-M, Lin S-H (2006) Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by in situ chemical oxidative polymerization. J Polym Sci Pol Phys 44:1413–1418

    Article  CAS  Google Scholar 

  177. Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nat Lond 443:63–66

    Article  CAS  Google Scholar 

  178. Bron M, Fiechter S, Hilgendorf M, Bogdanoff P (2002) Catalysts for oxygen reduction from heat-treated carbon-supported iron phenantroline complexes. J Appl Electrochem 32:211–216

    Article  CAS  Google Scholar 

  179. Côté R, Lalande G, Guay D, Dodelet J-P (1998) Influence of nitrogen-containing precursors on the electrocatalytic activtiy of heat-treated Fe(OH)2 on carbon black for O2 reduction. J Electrochem Soc 145:2411–2418

    Article  Google Scholar 

  180. Jaouen F, Lefèvre M, Dodelet J-P, Cai M (2006) Heat-treated Fe/N/C Catalysts for O2 electroreduction: are active sites hosted in micropores? J Phys Chem B 110:5553–5558

    Article  CAS  Google Scholar 

  181. Jaouen F, Marcotte S, Dodelet J-P, Lindbergh G (2003) Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports. J Phys Chem B 107:1376–1386

    Article  CAS  Google Scholar 

  182. Lefèvre M, Jaouen F, Dodelet J-P, Li XH, Chen K, Hay A (2006) Fe-based catalyst for oxygen reduction: functionalization of carbon black and importance of the microporosity. ECS Trans 3:201–210

    Article  Google Scholar 

  183. Maruyama J, K-i S, Kawaguchi M, Abe I (2004) Influence of activated carbon pore structure on oxygen reduction at catalyst layers supported on rotating disk electrodes. Carbon 42:3115–3121

    Article  CAS  Google Scholar 

  184. Proietti E, Ruggeri S, Dodelet J-P (2008) Fe-based electrocatalysts for oxygen reduction in PEMFCs using ball-milled graphite powder as a carbon support. J Electrochem Soc 155:B340–B348

    Article  CAS  Google Scholar 

  185. Wang P, Ma Z, Zhao Z, Jia L (2007) Oxygen reduction on the electrocatalysts based on pyrolysed non-noble metal/poly-o-phenylenediamine/carbon black composites: new insight into the active sites. J Electroanal Chem 611:87–95

    Article  CAS  Google Scholar 

  186. Wu G, Chen Z, Artyushkova K, Garzona FH, Zelenay P (2008) Polyaniline-derived non-precious catalyst for the polymer electrolyte fuel cell cathode. ECS Trans 16:159–170

    Article  CAS  Google Scholar 

  187. He P, Lefèvre M, Faubert G, Dodelet J-P (1999) Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of various transition metal acetates adsorbed on 3,4,9,10 perylenetetracarboxylic dianhydride. J New Mater Electrochem Sys 2:243–251

    CAS  Google Scholar 

  188. Bron M, Fiechter S, Bogdanoff P, Tributsch H (2002) Thermogravimetry/mass spectrometry investigations on the formation of oxygen reduction catalysts for PEM fuel cells on the basis of heat-treated iron phenantroline complexes. Fuel Cells 2:137–142

    Article  CAS  Google Scholar 

  189. Wu G, Artyushkova K, Ferrandon M, Kropf AJ, Myers D, Zelenay P (2009) Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Trans 25:1299–1311

    Article  Google Scholar 

  190. Kramm UI, Herranz J, Arruda TM, Larouche N, Lefèvre M, Jaouen F, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Stansfield B, Mukerjee S, Dodelet JP (2011) The role of Fe-modifications in the activity of Fe/N/C catalysts for the O2-reduction in PEM fuel cells, in preparation

    Google Scholar 

  191. Herranz J, Jaouen F, Lefevre M, Kramm UI, Proietti E, Dodelet JP, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Bertrand P, Arruda TM, Mukerjee S (2011) Unveiling N-protonation and anion binding effects on Fe/N/C-catalysts for O2 reduction in PEM fuel cells. J Phys Chem C, submitted (2011-05-10)

    Google Scholar 

  192. Lefèvre M, Proietti E, Jaouen F, Dodelet J-P (2009) Iron-based catalysts for oxygen reduction in PEM fuel cells: expanded study using the pore-filling method. ECS Trans 25:105–115

    Article  Google Scholar 

  193. Lee K, Zhang L, Lui H, Hui R, Shi Z, Zhang J (2009) Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts. Electrochim Acta 54:4704–4711

    Article  CAS  Google Scholar 

  194. Liu H, Shi Z, Zhang J, Zhang L, Zhang J (2009) Ultrasonic spray pyrolyzed iron-polypyrrole mesoporous spheres for fuel cell oxygen reduction electrocatalysts. J Mater Chem 19:468–470

    Article  CAS  Google Scholar 

  195. Gasteiger HA, Markovic NM (2009) Just a dream – or future reality? Science 324:48–49

    Article  CAS  Google Scholar 

  196. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloys, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56:9–35

    Article  CAS  Google Scholar 

  197. Maruyama J, Abe I (2007) Fuel cell cathode catalyst with heme-like structure formed from nitrogen of glycine and iron. J Electrochem Soc 154:B297–B304

    Article  CAS  Google Scholar 

  198. Nallathambi V, Wu G, Subramanian NP, Kumaraguru SP, Lee J-W, Popov BN (2007) Highly active carbon composite electrocatalysts for PEM fuel cells. ECS Trans 11:241–247

    Article  CAS  Google Scholar 

  199. Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2007) A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. J Power Sources 173:891–908

    Article  CAS  Google Scholar 

  200. Ekström H, Hanarp P, Gustavsson M, Fridell E, Lundblad A, Lindbergh G (2006) A novel approach for measuring catalytic activity of planar model catalysts in the polymer electrolyte fuel cell environment. J Electrochem Soc 153:A724–A730

    Article  CAS  Google Scholar 

  201. Liu G, Li X, Ganesan P, Popov BN (2009) Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon. Appl Catal B Environ 93:156–165

    Article  CAS  Google Scholar 

  202. Ma Z-F, Xie X-Y, Ma X-X, Zhang D-Y, Ren Q, Heß-Mohr N, Schmidt VM (2006) Electrochemical characteristics and performance of CoTMPP/BP oxygen reduction electrocatalysts for PEM fuel cell. Electrochem Commun 8:389–394

    Article  CAS  Google Scholar 

  203. Maruyama J, Abe I (2006) Carbonized hemoglobin functioning as a cathode catalyst for polymer electrolyte fuel cells. Chem Mater 18:1303–1311

    Article  CAS  Google Scholar 

  204. Maruyama J, Fukui N, Kawaguchi M, Abe I (2008) Application of nitrogen-rich amino acids to active site generation in oxygen reduction catalyst. J Power Sources 182:489–495

    Article  CAS  Google Scholar 

  205. Papakonstantinou G, Daletou MK, Kotsifa A, Paloukis F, Katerinopoulou K, Ioannides T, Neophytides SG (2009) Non noble metal electrocatalysts for high temperature PEM fuel cells. ECS Trans 25:181–189

    Article  CAS  Google Scholar 

  206. Yang J, Liu D-J, Kariuki NN, Chen LX (2008) Aligned carbon nanotubes with built-in FeN4 active sites for electrocatalytic reduction of oxygen. Chem Commun 3:329–331

    Article  CAS  Google Scholar 

  207. Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet J-P, Wu G, Chung HT, Johnston C, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130

    Article  CAS  Google Scholar 

  208. Zelenay P (2010) Advanced cathode catalysts, hydrogen program annual merit review and peer evaluation meeting. Project ID: fc005

    Google Scholar 

  209. Kramm UI, Herrmann-Geppert I, Proietti E, Jaouen F, Lefèvre M, Bogdanoff P, Dodelet J-P, Fiechter S (2011) Effect of a high-energy ball milling on the PEM-fuel-cell performance of Fe-N-C catalysts for the oxygen reduction. J Power Sources, in preparation

    Google Scholar 

  210. Beck F (1973) Voltammetrische Untersuchungen an elektrokatalytisch wirksamen Phthalocyaninen und Tetraazaannulenen in konzentrierter Schwefelsäure. Ber Bunsen Ges fuer Phys Chem 77:353–364

    CAS  Google Scholar 

  211. Meier H, Albrecht W, Tschirwitz U, Zimmerhackl E (1973) Zum Einfluß der Leitfähigkeit von Phthalocyaninen bei der Elektrokatalyse in Brennstoffzellen. Ber Bunsen Ges fuer Phys Chem 77:843–849

    CAS  Google Scholar 

  212. Bae IT, Scherson DA (1998) In situ X-ray absorption of a carbon monoxide-iron porphyrin adduct adsorbed on high area in an aqueous electrolyte. J Phys Chem B 102:2519–2522

    Article  CAS  Google Scholar 

  213. Appleby AJ, Savy M, Caro P (1980) The role of transition element multiple spin crossover in oxygen transport and electroreduction in porphyrin and phthalocyanine structures. J Electroanal Chem 111:91–96

    Article  CAS  Google Scholar 

  214. El Hourch A, Belcadi S, Moisy P, Crouigneau P, Léger JM, Lamy C (1992) Electrocatalytic reduction of oxygen at iron phthalocyanine modified polymer electrodes. J Electroanal Chem 339:1–12

    Article  CAS  Google Scholar 

  215. Lefèvre M, Dodelet J-P (2003) Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim Acta 48:2749–2760

    Article  CAS  Google Scholar 

  216. Ziegelbauer JM, Gatewood D, Gullá AF, Ramaker DE, Mukerjee S (2006) X-ray absorption spectroscopy studies of water activation on RhxSy electrocatalyst for oxygen reduction reaction application. Electrochem Solid State Lett 9:A430–A434

    Article  CAS  Google Scholar 

  217. Bae IT, Tryk DA, Scherson DA (1998) Effect of heat treatment on the redox properties of iron porphyrins adsorbed on high area carbon in acid electrolytes: An in situ Fe K-Edge X-ray absorption near-edge structure study. J Phys Chem B 102:4114–4117

    Article  CAS  Google Scholar 

  218. Birry L, Zagal JH, Dodelet J-P (2010) Does CO poison Fe-based catalysts for ORR? Electrochem Commun 12:628–631

    Article  CAS  Google Scholar 

  219. Borup RL, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, K-i K, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  CAS  Google Scholar 

  220. Young AP, Stumper J, Gyenge E (2009) Characterizing the structural degradation in a PEMFC cathode catalyst layer: carbon corrosion. J Electrochem Soc 156:B913–B922

    Article  CAS  Google Scholar 

  221. Baker R, Wilkinson DP, Zhang J (2008) Electrocatalytic activtiy and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. Electrochim Acta 53:6906–6919

    Article  CAS  Google Scholar 

  222. Charreteur F, Jaouen F, Dodelet J-P (2009) Iron porphyrin-based cathode catalysts for PEM fuel cells: influence of pyrolysis gas on activity and stability. Electrochim Acta 54:6622–6630

    Article  CAS  Google Scholar 

  223. Meng H, Larouche N, Lefèvre M, Jaouen F, Stansfield B, Dodelet J-P (2010) Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: Effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability. Electrochim Acta 55:6450–6461

    Article  CAS  Google Scholar 

  224. Wesselmark M, Lagegren C, Lindbergh G (2009) Degradation studies of PEMFC cathodes based on different types of carbon. ECS Trans 25:1241–1250

    Article  CAS  Google Scholar 

  225. Ettingshausen F, Weidner A, Zils S, Wolz A, Suffner J, Michel M, Roth C (2009) Alternative support materials for fuel cell catalysts. ECS Trans 25:1883–1892

    Article  CAS  Google Scholar 

  226. Huang S-Y, Ganesan P, Zhang P, Popov BN (2009) Development of novel metal oxide supported Pt catalysts for Polymer electrolyte membrane and unitized regenerative fuel cells applications. ECS Trans 25:1893–1902

    Article  CAS  Google Scholar 

  227. Shoyama M, Tomimura T, Okubo Y, Nambu H, Lin M-L, Hara K, Fukuoka A, Ishihara A, K-I O (2009) Synthesis of Ta-oxide based nano-sized cathode catalyst on highly ordered meso-porous carbon for PEM fuel cells. ECS Trans 25:1903–1908

    Article  CAS  Google Scholar 

  228. Mukundan R, Borup RL (2009) Visualising liquid water in PEM fuel cells using neutron imaging. Fuel Cells 9:499–505

    Article  CAS  Google Scholar 

  229. Manke I, Hartnig C, Grünerbel M, Kaczerowski J, Lehnert W, Kardjilov N, Hilger A, Banhart J, Treimer W, Strobl M (2007) Quasi-in situ neutron tomography on polymer electrolyte membrane fuel cell stacks. App Phys Lett 90:184101-(01–03)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike I. Kramm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Kramm, U.I., Bogdanoff, P., Fiechter, S. (2012). Polymer Electrolyte Membrane Fuel Cells (PEM-FC) and Non-noble Metal Catalysts for Oxygen Reduction . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_153

Download citation

Publish with us

Policies and ethics