Skip to main content

Laminins and Cancer Progression

  • Chapter
  • First Online:
Cell-Extracellular Matrix Interactions in Cancer

Abstract

Laminins (αβγ heterotrimers) form the basement membrane. They are important for many cell processes, through adhesion and signaling. There are 17 known laminins with different properties, depending on their subunits. Among the many functions fulfilled by laminins, they actively contribute to all stages of cancer progression, from the onset of the disease to the life-threatening development of metastases. At the cellular level, laminins are crucial in helping cells adhere, migrate, and differentiate.

Following the six hallmarks of cancer (self-sufficiency in growth signals, sustained angiogenesis, evading apoptosis, insensitivity to antigrowth signals, limitless replicative potential, and the ability for tissue invasion and metastasis), this chapter will outline available data involving laminins and their receptors in cell proliferation, death, angiogenesis, and cancer invasion and metastasis.

In light of those evidences, there is no doubt that laminins are able to regulate all stages of cancer progression, either directly or in partnership with receptors and coreceptors. Two laminins (laminin-111 and -332) are particularly active in carcinogenesis, while others seem to be more specific to angiogenesis (laminin-211, -213, and -221) or motility (laminin-511). Furthermore, laminins can activate different receptors, which induce different signaling pathways. Some are redundant to laminin functions (PI-3K, FAK, ERK), and others are only activated in a particular context, such as the laminin-induced relocation to the nucleus of transcription factors.

Overall, this chapter updates our knowledge on the role played by laminins in cancer. By integrating the latest developments in the field, this review helps elucidate how these proteins can be at the center of new diagnostic tools, prognostic power, and therapeutic strategies in the fight against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3-D:

Three-dimensional

67LR:

67 kDa laminin receptor

ADPKD:

Autosomal dominant polycystic kidney disease

AE-2:

Alveolar epithelial type II cells

BM:

Basement membrane

BP:

Bullous pemphigoid antigen

CDKI:

Cyclin-dependent kinase inhibitor

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EHS:

Engelbreth-Holm-Swarm

ERK:

Extracellular signal-regulated kinase

FAK:

Focal adhesion kinase

FGF:

Fibroblast growth factor

Grb2:

Activation of growth factor receptor-bound protein 2

HGF:

Hepatocyte growth factor

IGCA:

Intestinal-type gastric carcinomas

IGF:

Insulin-like growth factor

IL:

Interleukin

IRS:

Insulin receptors

JNK:

Jun N-terminal kinase

LCNC:

Large-cell neuroendocrine carcinoma

LG:

Laminin G domain-like

MAPK:

Mitogen-activated protein kinase

MEK:

Mitogen-activated protein kinase kinase

MMP:

Matrix metalloproteinase

MT-MMP:

Membrane type matrix metalloproteinase

mTOR:

Mammalian target of rapamycin

NFκB:

Nuclear factor-kappa B

NGF:

Nerve growth factor

NSCLC:

Non-small cell lung carcinomas

PI-3K:

Phosphoinositide 3-kinase

PKB:

Protein kinase B

PKC:

Protein kinase C

RTK:

Receptor tyrosine kinase

SCC:

Squamous cell carcinoma

SH2:

Src homology 2 domain

STAT:

Signal transducers and activators of transcription

TGF:

Transforming growth factor

tPA:

Tissue plasminogen activator

TUNEL:

Terminal transferase dUTP nick end labeling

VEGF:

Vascular endothelial growth factor.

References

  • Ardini E, Pesole G et al (1998) The 67-kDa laminin receptor originated from a ribosomal protein that acquired a dual function during evolution. Mol Biol Evol 15(8):1017–1025

    CAS  PubMed  Google Scholar 

  • Ardini E, Sporchia B et al (2002) Identification of a novel function for 67-kDa laminin receptor: increase in laminin degradation rate and release of motility fragments. Cancer Res 62(5):1321–1325

    CAS  PubMed  Google Scholar 

  • Aumailley M, Bruckner-Tuderman L et al (2005) A simplified laminin nomenclature. Matrix Biol 24(5):326–332

    CAS  PubMed  Google Scholar 

  • Bachelder RE, Ribick MJ et al (1999) p53 inhibits alpha 6 beta 4 integrin survival signaling by promoting the caspase 3-dependent cleavage of AKT/PKB. J Cell Biol 147(5):1063–1072

    CAS  PubMed  Google Scholar 

  • Bello-DeOcampo D, Kleinman HK et al (2001) The role of alpha 6 beta 1 integrin and EGF in normal and malignant acinar morphogenesis of human prostatic epithelial cells. Mutat Res 480–481:209–217

    PubMed  Google Scholar 

  • Berditchevski F (2001) Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 114(Pt 23):4143–4151

    CAS  PubMed  Google Scholar 

  • Bill HM, Knudsen B et al (2004) Epidermal growth factor receptor-dependent regulation of integrin-mediated signaling and cell cycle entry in epithelial cells. Mol Cell Biol 24(19):8586–8599

    CAS  PubMed  Google Scholar 

  • Brar PK, Dalkin BL et al (2003) Laminin alpha-1, alpha-3, and alpha-5 chain expression in human prepubertal [correction of prepubetal] benign prostate glands and adult benign and malignant prostate glands. Prostate 55(1):65–70

    PubMed  Google Scholar 

  • Campbell WA, Thompson NL (2001) Overexpression of LAT1/CD98 light chain is sufficient to increase system L-amino acid transport activity in mouse hepatocytes but not fibroblasts. J Biol Chem 276(20):16877–16884

    CAS  PubMed  Google Scholar 

  • Chen X, Abair TD et al (2007) Integrin alpha1beta1 controls reactive oxygen species synthesis by negatively regulating epidermal growth factor receptor-mediated Rac activation. Mol Cell Biol 27(9):3313–3326

    CAS  PubMed  Google Scholar 

  • Chi S, Kitanaka C et al (1999) Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells. Oncogene 18(13):2281–2290

    CAS  PubMed  Google Scholar 

  • Chia J, Kusuma N et al (2007) Evidence for a role of tumor-derived laminin-511 in the metastatic progression of breast cancer. Am J Pathol 170(6):2135–2148

    CAS  PubMed  Google Scholar 

  • Choma DP, Pumiglia K et al (2004) Integrin alpha3beta1 directs the stabilization of a pola-rized lamellipodium in epithelial cells through activation of Rac1. J Cell Sci 117(Pt 17):3947–3959

    CAS  PubMed  Google Scholar 

  • Church HJ, Aplin JD (1998) BeWo choriocarcinoma cells produce laminin 10. Biochem J 332(Pt 2):491–498

    CAS  PubMed  Google Scholar 

  • Clarke AS, Lotz MM et al (1995) Activation of the p21 pathway of growth arrest and apoptosis by the beta 4 integrin cytoplasmic domain. J Biol Chem 270(39):22673–22676

    CAS  PubMed  Google Scholar 

  • Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218(2):213–234

    CAS  PubMed  Google Scholar 

  • Colognato H, Winkelmann DA et al (1999) Laminin polymerization induces a receptor-cytoskeleton network. J Cell Biol 145(3):619–631

    CAS  PubMed  Google Scholar 

  • Coppolino M, Migliorini M et al (1995) Identification of a novel form of the alpha 3 integrin subunit: covalent association with transferrin receptor. Biochem J 306(Pt 1):129–134

    CAS  PubMed  Google Scholar 

  • Dajee M, Lazarov M et al (2003) NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421(6923):639–643

    CAS  PubMed  Google Scholar 

  • Dans M, Gagnoux-Palacios L et al (2001) Tyrosine phosphorylation of the beta 4 integrin cytoplasmic domain mediates Shc signaling to extracellular signal-regulated kinase and antagonizes formation of hemidesmosomes. J Biol Chem 276(2):1494–1502

    CAS  PubMed  Google Scholar 

  • Davis TL, Cress AE et al (2001) Unique expression pattern of the alpha6beta4 integrin and laminin-5 in human prostate carcinoma. Prostate 46(3):240–248

    CAS  PubMed  Google Scholar 

  • Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional cultures. Nat Rev Cancer 5(9):675–688

    CAS  PubMed  Google Scholar 

  • Degenhardt K, Mathew R et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10(1):51–64

    CAS  PubMed  Google Scholar 

  • DiPersio CM, van der Neut R et al (2000) Alpha3beta1 and alpha6beta4 integrin receptors for laminin-5 are not essential for epidermal morphogenesis and homeostasis during skin development. J Cell Sci 113(Pt 17):3051–3062

    CAS  PubMed  Google Scholar 

  • Donaldson EA, McKenna DJ et al (2000) The expression of membrane-associated 67-kDa laminin receptor (67LR) is modulated in vitro by cell-contact inhibition. Mol Cell Biol Res Commun 3(1):53–59

    CAS  PubMed  Google Scholar 

  • Edick MJ, Tesfay L et al (2007) Inhibition of integrin-mediated crosstalk with epidermal growth factor receptor/Erk or Src signaling pathways in autophagic prostate epithelial cells induces caspase-independent death. Mol Biol Cell 18(7):2481–2490

    CAS  PubMed  Google Scholar 

  • Engvall E, Wewer UM (1996) Domains of laminin. J Cell Biochem 61(4):493–501

    CAS  PubMed  Google Scholar 

  • Faraldo MM, Deugnier MA et al (1998) Perturbation of beta1-integrin function alters the development of murine mammary gland. EMBO J 17(8):2139–2147

    CAS  PubMed  Google Scholar 

  • Feral CC, Nishiya N et al (2005) CD98hc (SLC3A2) mediates integrin signaling. Proc Natl Acad Sci USA 102(2):355–360

    CAS  PubMed  Google Scholar 

  • Filippovich IV, Sorokina NI et al (1997) Radiation-induced apoptosis in human ovarian carcinoma cells growing as a monolayer and as multicell spheroids. Int J Cancer 72(5):851–859

    CAS  PubMed  Google Scholar 

  • Folgiero V, Bachelder RE et al (2007) The alpha6beta4 integrin can regulate ErbB-3 expression: implications for alpha6beta4 signaling and function. Cancer Res 67(4):1645–1652

    CAS  PubMed  Google Scholar 

  • Frank DE, Carter WG (2004) Laminin 5 deposition regulates keratinocyte polarization and persistent migration. J Cell Sci 117(Pt 8):1351–1363

    CAS  PubMed  Google Scholar 

  • Frankel A, Buckman R et al (1997) Abrogation of taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids. Cancer Res 57(12):2388–2393

    CAS  PubMed  Google Scholar 

  • Fridman R, Giaccone G et al (1990) Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci USA 87(17):6698–6702

    CAS  PubMed  Google Scholar 

  • Friedrichs K, Ruiz P et al (1995) High expression level of alpha 6 integrin in human breast carcinoma is correlated with reduced survival. Cancer Res 55(4):901–906

    CAS  PubMed  Google Scholar 

  • Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13(5):555–562

    CAS  PubMed  Google Scholar 

  • Fujita M, Khazenzon NM et al (2005) Overexpression of beta1-chain-containing laminins in capillary basement membranes of human breast cancer and its metastases. Breast Cancer Res 7(4):R411–R421

    CAS  PubMed  Google Scholar 

  • Geuijen CA, Sonnenberg A (2002) Dynamics of the alpha6beta4 integrin in keratinocytes. Mol Biol Cell 13(11):3845–3858

    CAS  PubMed  Google Scholar 

  • Giancotti FG (2007) Targeting integrin beta4 for cancer and anti-angiogenic therapy. Trends Pharmacol Sci 28(10):506–511

    CAS  PubMed  Google Scholar 

  • Giannelli G, Antonaci S (2000) Biological and clinical relevance of laminin-5 in cancer. Clin Exp Metastasis 18(6):439–443

    CAS  PubMed  Google Scholar 

  • Giannelli G, Falk-Marzillier J et al (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277(5323):225–228

    CAS  PubMed  Google Scholar 

  • Givant-Horwitz V, Davidson B et al (2005) Laminin-induced signaling in tumor cells. Cancer Lett 223(1):1–10

    CAS  PubMed  Google Scholar 

  • Goel HL, Moro L et al (2006) Beta1 integrins modulate cell adhesion by regulating insulin-like growth factor-II levels in the microenvironment. Cancer Res 66(1):331–342

    CAS  PubMed  Google Scholar 

  • Goldberg I, Davidson B et al (1998) Expression of extracellular matrix proteins in cervical squamous cell carcinoma–a clinicopathological study. J Clin Pathol 51(10):781–785

    CAS  PubMed  Google Scholar 

  • Gonzalez AM, Gonzales M et al (2002) Complex interactions between the laminin alpha 4 subunit and integrins regulate endothelial cell behavior in vitro and angiogenesis in vivo. Proc Natl Acad Sci USA 99(25):16075–16080

    CAS  PubMed  Google Scholar 

  • Grant DS, Tashiro K et al (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58(5):933–943

    CAS  PubMed  Google Scholar 

  • Guess C, LaFleur BJ et al (2009) A decreased ratio of laminin-332 β3 to γ2 subunit mRNA is associated with poor prognosis in colon cancer. Cancer Epidemiol Biomarkers Prev (in press)

    Google Scholar 

  • Guo W, Pylayeva Y et al (2006) Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 126(3):489–502

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    CAS  PubMed  Google Scholar 

  • Hemler ME, Crouse C et al (1989) Association of the VLA alpha 6 subunit with a novel protein. A possible alternative to the common VLA beta 1 subunit on certain cell lines. J Biol Chem 264(11):6529–6535

    CAS  PubMed  Google Scholar 

  • Hintermann E, Quaranta V (2004) Epithelial cell motility on laminin-5: regulation by matrix assembly, proteolysis, integrins and erbB receptors. Matrix Biol 23(2):75–85

    CAS  PubMed  Google Scholar 

  • Hintermann E, Bilban M et al (2001) Inhibitory role of alpha 6 beta 4-associated erbB-2 and phosphoinositide 3-kinase in keratinocyte haptotactic migration dependent on alpha 3 beta 1 integrin. J Cell Biol 153(3):465–478

    CAS  PubMed  Google Scholar 

  • Joly D, Berissi S et al (2006) Laminin 5 regulates polycystic kidney cell proliferation and cyst formation. J Biol Chem 281(39):29181–29189

    CAS  PubMed  Google Scholar 

  • Jones JC, Asmuth J et al (1994) Hemidesmosomes: extracellular matrix/intermediate filament connectors. Exp Cell Res 213(1):1–11

    CAS  PubMed  Google Scholar 

  • Kim WH, Lee BL et al (1999) Laminin-1-adherent cancer cells show increased proliferation and decreased apoptosis in vivo. Anticancer Res 19(4B):3067–3071

    CAS  PubMed  Google Scholar 

  • Kolesnikova TV, Mannion BA et al (2001) Beta1 integrins show specific association with CD98 protein in low density membranes. BMC Biochem 2:10

    CAS  PubMed  Google Scholar 

  • Koshikawa N, Moriyama K et al (1999) Overexpression of laminin gamma2 chain monomer in invading gastric carcinoma cells. Cancer Res 59(21):5596–5601

    CAS  PubMed  Google Scholar 

  • Koshikawa N, Giannelli G et al (2000) Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148(3):615–624

    CAS  PubMed  Google Scholar 

  • Koshikawa N, Schenk S et al (2004) Proteolytic processing of laminin-5 by MT1-MMP in tissues and its effects on epithelial cell morphology. FASEB J 18(2):364–366

    CAS  PubMed  Google Scholar 

  • Kuchenbauer F, Hopfner U et al (2001) Extracellular matrix components regulate ACTH production and proliferation in corticotroph tumor cells. Mol Cell Endocrinol 175(1–2):141–148

    CAS  PubMed  Google Scholar 

  • Kuchenbauer F, Theodoropoulou M et al (2003) Laminin inhibits lactotroph proliferation and is reduced in early prolactinoma development. Mol Cell Endocrinol 207(1–2):13–20

    CAS  PubMed  Google Scholar 

  • LeBleu VS, Macdonald B et al (2007) Structure and function of basement membranes. Exp Biol Med (Maywood) 232(9):1121–1129

    CAS  Google Scholar 

  • Lekmine F, Feracci H et al (1999) Expression of laminin-2 by normal and neoplastic rat C cells during the development of medullary thyroid carcinoma. Virchows Arch 434(4):325–332

    CAS  PubMed  Google Scholar 

  • Li X, Talts U et al (2001) Akt/PKB regulates laminin and collagen IV isotypes of the basement membrane. Proc Natl Acad Sci USA 98(25):14416–14421

    CAS  PubMed  Google Scholar 

  • Li N, Zhang Y et al (2005) Beta1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. EMBO J 24(11):1942–1953

    CAS  PubMed  Google Scholar 

  • Lipscomb EA, Simpson KJ et al (2005) The alpha6beta4 integrin maintains the survival of human breast carcinoma cells in vivo. Cancer Res 65(23):10970–10976

    CAS  PubMed  Google Scholar 

  • Ljubimova JY, Fujita M et al (2006) Changes in laminin isoforms associated with brain tumor invasion and angiogenesis. Front Biosci 11:81–88

    CAS  PubMed  Google Scholar 

  • Lotz MM, Nusrat A et al (1997) Intestinal epithelial restitution. Involvement of specific laminin isoforms and integrin laminin receptors in wound closure of a transformed model epithelium. Am J Pathol 150(2):747–760

    CAS  PubMed  Google Scholar 

  • Mainiero F, Murgia C et al (1997) The coupling of alpha6beta4 integrin to Ras-MAP kinase pathways mediated by Shc controls keratinocyte proliferation. EMBO J 16(9):2365–2375

    CAS  PubMed  Google Scholar 

  • Malinda KM, Nomizu M et al (1999) Identification of laminin alpha1 and beta1 chain peptides active for endothelial cell adhesion, tube formation, and aortic sprouting. FASEB J 13(1):53–62

    CAS  PubMed  Google Scholar 

  • Malorni W, Matarrese P et al (2007) Xeno-cannibalism: a survival “escamotage”. Autophagy 3(1):75–77

    PubMed  Google Scholar 

  • Marinkovich MP (2007) Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat Rev Cancer 7(5):370–380

    CAS  PubMed  Google Scholar 

  • Matsumoto K, Nakamura T et al (1994) Hepatocyte growth factor/scatter factor induces tyrosine phosphorylation of focal adhesion kinase (p125FAK) and promotes migration and invasion by oral squamous cell carcinoma cells. J Biol Chem 269(50):31807–31813

    CAS  PubMed  Google Scholar 

  • Melino G (2005) Discovery of the ubiquitin proteasome system and its involvement in apoptosis. Cell Death Differ 12(9):1155–1157

    CAS  PubMed  Google Scholar 

  • Mercurio AM, Bachelder RE et al (2001a) Integrin laminin receptors and breast carcinoma progression. J Mammary Gland Biol Neoplasia 6(3):299–309

    CAS  PubMed  Google Scholar 

  • Mercurio AM, Rabinovitz I et al (2001b) The alpha 6 beta 4 integrin and epithelial cell migration. Curr Opin Cell Biol 13(5):541–545

    CAS  PubMed  Google Scholar 

  • Miyamoto S, Akiyama SK et al (1995) Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267(5199):883–885

    CAS  PubMed  Google Scholar 

  • Mortarini R, Gismondi A et al (1995) Mitogenic activity of laminin on human melanoma and melanocytes: different signal requirements and role of beta 1 integrins. Cancer Res 55(20):4702–4710

    CAS  PubMed  Google Scholar 

  • Moss BL, Taubner L et al (2006) Tumor shedding of laminin binding protein modulates angiostatin production in vitro and interferes with plasmin-derived inhibition of angiogenesis in aortic ring cultures. Int J Cancer 118(10):2421–2432

    CAS  PubMed  Google Scholar 

  • Muschler J, Lochter A et al (1999) Division of labor among the alpha6beta4 integrin, beta1 integrins, and an E3 laminin receptor to signal morphogenesis and beta-casein expression in mammary epithelial cells. Mol Biol Cell 10(9):2817–2828

    CAS  PubMed  Google Scholar 

  • Nguyen BP, Gil SG et al (2000) Deposition of laminin 5 by keratinocytes regulates integrin adhesion and signaling. J Biol Chem 275(41):31896–31907

    CAS  PubMed  Google Scholar 

  • Nguyen BP, Ren XD et al (2001) Ligation of integrin alpha 3beta 1 by laminin 5 at the wound edge activates Rho-dependent adhesion of leading keratinocytes on collagen. J Biol Chem 276(47):43860–43870

    CAS  PubMed  Google Scholar 

  • Nikolopoulos SN, Blaikie P et al (2005) Targeted deletion of the integrin beta4 signaling domain suppresses laminin-5-dependent nuclear entry of mitogen-activated protein kinases and NF-kappaB, causing defects in epidermal growth and migration. Mol Cell Biol 25(14):6090–6102

    CAS  PubMed  Google Scholar 

  • Ortiz-Urda S, Garcia J et al (2005) Type VII collagen is required for Ras-driven human epidermal tumorigenesis. Science 307(5716):1773–1776

    CAS  PubMed  Google Scholar 

  • Panka DJ, Wang W et al (2006) The Raf inhibitor BAY 43–9006 (Sorafenib) induces caspase-independent apoptosis in melanoma cells. Cancer Res 66(3):1611–1619

    CAS  PubMed  Google Scholar 

  • Pouliot N, Nice EC et al (2001) Laminin-10 mediates basal and EGF-stimulated motility of human colon carcinoma cells via alpha(3)beta(1) and alpha(6)beta(4) integrins. Exp Cell Res 266(1):1–10

    CAS  PubMed  Google Scholar 

  • Pozzi A, Moberg PE et al (2000) Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci USA 97(5):2202–2207

    CAS  PubMed  Google Scholar 

  • Rabinovitz I, Toker A et al (1999) Protein kinase C-dependent mobilization of the alpha6beta4 integrin from hemidesmosomes and its association with actin-rich cell protrusions drive the chemotactic migration of carcinoma cells. J Cell Biol 146(5):1147–1160

    CAS  PubMed  Google Scholar 

  • Rabinovitz I, Gipson IK et al (2001) Traction forces mediated by alpha6beta4 integrin: implications for basement membrane organization and tumor invasion. Mol Biol Cell 12(12):4030–4043

    CAS  PubMed  Google Scholar 

  • Rae JM, Creighton CJ et al (2007) MDA-MB-435 cells are derived from M14 melanoma cells–a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104(1):13–19

    PubMed  Google Scholar 

  • Raymond K, Kreft M et al (2005) Keratinocytes display normal proliferation, survival and differentiation in conditional beta4-integrin knockout mice. J Cell Sci 118(Pt 5):1045–1060

    CAS  PubMed  Google Scholar 

  • Rossino P, Defilippi P et al (1991) Up-regulation of the integrin alpha 1/beta 1 in human neuroblastoma cells differentiated by retinoic acid: correlation with increased neurite outgrowth response to laminin. Cell Regul 2(12):1021–1033

    CAS  PubMed  Google Scholar 

  • Santoro MM, Gaudino G et al (2003) The MSP receptor regulates alpha6beta4 and alpha3beta1 integrins via 14–3–3 proteins in keratinocyte migration. Dev Cell 5(2):257–271

    CAS  PubMed  Google Scholar 

  • Sathyanarayana UG, Padar A et al (2003) Aberrant promoter methylation and silencing of laminin-5-encoding genes in breast carcinoma. Clin Cancer Res 9(17):6389–6394

    CAS  PubMed  Google Scholar 

  • Schenk S, Hintermann E et al (2003) Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution. J Cell Biol 161(1):197–209

    CAS  PubMed  Google Scholar 

  • Scherz-Shouval R, Shvets E et al (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26(7):1749–1760

    CAS  PubMed  Google Scholar 

  • Seftor RE, Seftor EA et al (2001) Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res 61(17):6322–6327

    CAS  PubMed  Google Scholar 

  • Senger DR, Perruzzi CA et al (2002) The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol 160(1):195–204

    CAS  PubMed  Google Scholar 

  • Shaw LM (2001) Identification of insulin receptor substrate 1 (IRS-1) and IRS-2 as signaling intermediates in the alpha6beta4 integrin-dependent activation of phosphoinositide 3-OH kinase and promotion of invasion. Mol Cell Biol 21(15):5082–5093

    CAS  PubMed  Google Scholar 

  • Shaw LM, Chao C et al (1996) Function of the integrin alpha 6 beta 1 in metastatic breast carcinoma cells assessed by expression of a dominant-negative receptor. Cancer Res 56(5):959–963

    CAS  PubMed  Google Scholar 

  • Shaw LM, Rabinovitz I et al (1997) Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell 91(7):949–960

    CAS  PubMed  Google Scholar 

  • Shaw KR, Wrobel CN et al (2004) Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammary epithelial morphogenesis. J Mammary Gland Biol Neoplasia 9(4):297–310

    PubMed  Google Scholar 

  • Sterk LM, Geuijen CA et al (2002) Association of the tetraspanin CD151 with the laminin-binding integrins alpha3beta1, alpha6beta1, alpha6beta4 and alpha7beta1 in cells in culture and in vivo. J Cell Sci 115(Pt 6):1161–1173

    CAS  PubMed  Google Scholar 

  • Streuli CH, Schmidhauser C et al (1995) Laminin mediates tissue-specific gene expression in mammary epithelia. J Cell Biol 129(3):591–603

    CAS  PubMed  Google Scholar 

  • Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 115(Pt 19):3729–3738

    CAS  PubMed  Google Scholar 

  • Takao J, Yudate T et al (2003) Expression of NF-kappaB in epidermis and the relationship between NF-kappaB activation and inhibition of keratinocyte growth. Br J Dermatol 148(4):680–688

    CAS  PubMed  Google Scholar 

  • Talts JF, Sasaki T et al (2000) Structural and functional analysis of the recombinant G domain of the laminin alpha4 chain and its proteolytic processing in tissues. J Biol Chem 275(45):35192–35199

    CAS  PubMed  Google Scholar 

  • Tate A, Isotani S et al (2006) Met-independent hepatocyte growth factor-mediated regulation of cell adhesion in human prostate cancer cells. BMC Cancer 6:197

    PubMed  Google Scholar 

  • Timpl R, Rohde H et al (1979) Laminin–a glycoprotein from basement membranes. J Biol Chem 254(19):9933–9937

    CAS  PubMed  Google Scholar 

  • Tripathi M, Nandana S et al (2008) Laminin-332 is a substrate for hepsin, a protease associated with prostate cancer progression. J Biol Chem 283(45):30576–30584

    CAS  PubMed  Google Scholar 

  • Trusolino L, Bertotti A et al (2001) A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell 107(5):643–654

    CAS  PubMed  Google Scholar 

  • Tzu J, Marinkovich MP (2008) Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol 40(2):199–214

    CAS  PubMed  Google Scholar 

  • Udayakumar TS, Chen ML et al (2003) Membrane type-1-matrix metalloproteinase expressed by prostate carcinoma cells cleaves human laminin-5 beta3 chain and induces cell migration. Cancer Res 63(9):2292–2299

    CAS  PubMed  Google Scholar 

  • Vitolo D, Ciocci L et al (2006) Laminin alpha2 chain-positive vessels and epidermal growth factor in lung neuroendocrine carcinoma: a model of a novel cooperative role of laminin-2 and epidermal growth factor in vessel neoplastic invasion and metastasis. Am J Pathol 168(3):991–1003

    CAS  PubMed  Google Scholar 

  • Wang F, Hansen RK et al (2002) Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. J Natl Cancer Inst 94(19):1494–1503

    CAS  PubMed  Google Scholar 

  • Wang H, Fu W et al (2004) Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol 164(6):935–941

    CAS  PubMed  Google Scholar 

  • Weaver VM, Lelievre S et al (2002) Beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2(3):205–216

    CAS  PubMed  Google Scholar 

  • Wilhelmsen K, Litjens SH et al (2006) Multiple functions of the integrin alpha6beta4 in epidermal homeostasis and tumorigenesis. Mol Cell Biol 26(8):2877–2886

    CAS  PubMed  Google Scholar 

  • Woodward TL, Lu H et al (2000) Laminin inhibits estrogen action in human breast cancer cells. Endocrinology 141(8):2814–2821

    CAS  PubMed  Google Scholar 

  • Yamamoto H, Irie A et al (1996) Abrogation of lung metastasis of human fibrosarcoma cells by ribozyme-mediated suppression of integrin alpha6 subunit expression. Int J Cancer 65(4):519–524

    CAS  PubMed  Google Scholar 

  • Yaswen P, Stampfer MR (2002) Molecular changes accompanying senescence and immortalization of cultured human mammary epithelial cells. Int J Biochem Cell Biol 34(11):1382–1394

    CAS  PubMed  Google Scholar 

  • Zhou Z, Doi M et al (2004) Deletion of laminin-8 results in increased tumor neovascularization and metastasis in mice. Cancer Res 64(12):4059–4063

    CAS  PubMed  Google Scholar 

  • Zhu AJ, Haase I et al (1999) Signaling via beta1 integrins and mitogen-activated protein kinase determines human epidermal stem cell fate in vitro. Proc Natl Acad Sci USA 96(12):6728–6733

    CAS  PubMed  Google Scholar 

  • Zhu CQ, Popova SN et al (2007) Integrin alpha 11 regulates IGF2 expression in fibroblasts to enhance tumorigenicity of human non-small-cell lung cancer cells. Proc Natl Acad Sci USA 104(28):11754–11759

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Quaranta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jourquin, J., Tripathi, M., Guess, C., Quaranta, V. (2010). Laminins and Cancer Progression. In: Zent, R., Pozzi, A. (eds) Cell-Extracellular Matrix Interactions in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0814-8_5

Download citation

Publish with us

Policies and ethics