Skip to main content

Epigenetic Drift and Aging

  • Chapter
Epigenetics of Aging

Abstract

Epigenetics of aging is an emerging field that promises exciting revelations in the near future. Epigenetic pathways, including DNA methylation and histone modification, are determinants of normal development and can change during aging. Some of the epigenetic alterations described during aging, as hypermethylation at specific promoters and decrease of global DNA methylation, are also associated with tumour development. The epigenetic changes occurring during development and aging can be stochastic or depend on environmental factors. Future challenges in the field involve the determination of the precise molecular mechanisms that create age-dependent epigenetic variation and how these epigenetic changes affect the aging phenotype.

*Both authors contributed equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK. 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–9

    Article  CAS  PubMed  Google Scholar 

  • Belinsky SA, Palmisano WA, Gilliland FD, Crooks LA, Divine KK, Winters SA, Grimes MJ, Harms HJ, Tellez CS, Smith TM, Moots PP, Lechner JF, Stidley CA, Crowell RE. 2002. Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res 62:2370–7

    CAS  PubMed  Google Scholar 

  • Berdyshev GD, Korotaev GK, Boyarskikh GV, Vanyushin BF. 1967. Nucleotide composition of DNA and RNA from somatic tissues of humpback salmon and its changes during spawning. Biokhimia 32

    Google Scholar 

  • Bestor TH. 2000. The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–402

    Article  CAS  PubMed  Google Scholar 

  • Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. 2007. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–4

    Article  CAS  PubMed  Google Scholar 

  • Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K. 2007. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21:525–30

    Article  CAS  PubMed  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA. 2005. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–5

    Article  CAS  PubMed  Google Scholar 

  • Chan TL, Yuen ST, Kong CK, Chan YW, Chan AS, Ng WF, Tsui WY, Lo MW, Tam WY, Li VS, Leung SY. 2006. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet 38:1178–83

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Blasco MA, Serrano M. 2007. Cellular senescence in cancer and aging. Cell 130: 223–33

    Article  CAS  PubMed  Google Scholar 

  • Cropley JE, Suter CM, Beckman KB, Martin DI. 2006. Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proc Natl Acad Sci USA 103:17308–12

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M. 2005. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–9

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF, Esteller M. 2005. Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 4:1377–81

    CAS  PubMed  Google Scholar 

  • Fraga MF, Esteller M. 2007. Epigenetics and aging: the targets and the marks. Trends Genet 23:413–8

    Article  CAS  PubMed  Google Scholar 

  • Gartner K. 1990. A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab Anim 24:71–7

    Article  CAS  PubMed  Google Scholar 

  • Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA. 2006. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8:416–24

    Article  CAS  PubMed  Google Scholar 

  • Harley CB, Futcher AB, Greider CW. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:458–60

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS. 1961. The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  Google Scholar 

  • Heard E, Disteche CM. 2006. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 20:1848–67

    Article  CAS  PubMed  Google Scholar 

  • Hendrich B, Bird A. 1998. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–47

    CAS  PubMed  Google Scholar 

  • Holliday R. 2006. Epigenetics: a historical overview. Epigenetics 1:76–80

    Article  PubMed  Google Scholar 

  • Issa JP. 2003. Age-related epigenetic changes and the immune system. Clin Immunol 109:103–8

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB. 2002. The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–28

    Article  CAS  PubMed  Google Scholar 

  • Kangaspeska S, Stride B, Metivier R, Polycarpou-Schwarz M, Ibberson D, Carmouche RP, Benes V, Gannon F, Reid G. 2008. Transient cyclical methylation of promoter DNA. Nature 452:112–5

    Article  CAS  PubMed  Google Scholar 

  • Kuratomi G, Iwamoto K, Bundo M, Kusumi I, Kato N, Iwata N, Ozaki N, Kato T. 2008. Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry 13:429–41

    Article  CAS  PubMed  Google Scholar 

  • Lyon MF. 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–3

    Article  CAS  PubMed  Google Scholar 

  • Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G. 2008. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–50

    Article  CAS  PubMed  Google Scholar 

  • Mill J, Dempster E, Caspi A, Williams B, Moffitt T, Craig I. 2006. Evidence for monozygotic twin (MZ) discordance in methylation level at two CpG sites in the promoter region of the catechol-O-methyltransferase (COMT) gene. Am J Med Genet B Neuropsychiatr Genet 141B: 421–5

    Article  CAS  PubMed  Google Scholar 

  • Morak M, Schackert HK, Rahner N, Betz B, Ebert M, Walldorf C, Royer-Pokora B, Schulmann K, von Knebel-Doeberitz M, Dietmaier W, Keller G, Kerker B, Leitner G, Holinski-Feder E. 2008. Further evidence for heritability of an epimutation in one of 12 cases with MLH1 promoter methylation in blood cells clinically displaying HNPCC. Eur J Hum Genet 16:804–11

    Article  CAS  PubMed  Google Scholar 

  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E. 1999. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–8

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW. 2003. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–16

    Article  CAS  PubMed  Google Scholar 

  • Nishida N, Nagasaka T, Nishimura T, Ikai I, Boland CR, Goel A. 2008. Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma. Hepatology 47:908–18

    Article  CAS  PubMed  Google Scholar 

  • Oakes CC, Smiraglia DJ, Plass C, Trasler JM, Robaire B. 2003. Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proc Natl Acad Sci USA 100:1775–80

    Article  CAS  PubMed  Google Scholar 

  • Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E. 2004. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–9

    Article  CAS  PubMed  Google Scholar 

  • Petronis A, Gottesman, II, Kan P, Kennedy JL, Basile VS, Paterson AD, Popendikyte V. 2003. Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29:169–78

    PubMed  Google Scholar 

  • Poulsen P, Esteller M, Vaag A, Fraga MF. 2007. The epigenetic basis of twin discordance in age-related diseases. Pediatr Res 61:38R–42R

    Article  PubMed  Google Scholar 

  • Rakyan VK, Beck S. 2006. Epigenetic variation and inheritance in mammals. Curr Opin Genet Dev 16:573–7

    Article  CAS  PubMed  Google Scholar 

  • Ronn T, Poulsen P, Hansson O, Holmkvist J, Almgren P, Nilsson P, Tuomi T, Isomaa B, Groop L, Vaag A, Ling C. 2008. Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle. Diabetologia 51:1159–68

    Article  CAS  PubMed  Google Scholar 

  • Rosa A, Picchioni MM, Kalidindi S, Loat CS, Knight J, Toulopoulou T, Vonk R, van der Schot AC, Nolen W, Kahn RS, McGuffin P, Murray RM, Craig IW. 2008. Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. Am J Med Genet B Neuropsychiatr Genet 147B:459–62

    Article  PubMed  Google Scholar 

  • So K, Tamura G, Honda T, Homma N, Endoh M, Togawa N, Nishizuka S, Motoyama T. 2006. Quantitative assessment of RUNX3 methylation in neoplastic and non-neoplastic gastric epithelia using a DNA microarray. Pathol Int 56:571–5

    Article  CAS  PubMed  Google Scholar 

  • Tang WY, Ho SM. 2007. Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord 8:173–82

    Article  PubMed  Google Scholar 

  • Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M. 1999. Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res 70:288–92

    Article  CAS  PubMed  Google Scholar 

  • Vanyushin BF, Nemirovski LE, Klimenko VV, Vasiliev VK, Belozersky AN. 1973. The 5-Methylcytosine in DNA of rats. Gerontologia 19:138–152

    Article  CAS  PubMed  Google Scholar 

  • Vogt G, Huber M, Thiemann M, van den Boogaart G, Schmitz OJ, Schubart CD. 2008. Production of different phenotypes from the same genotype in the same environment by developmental variation. J Exp Biol 211:510–23

    Article  CAS  PubMed  Google Scholar 

  • Waterland RA. 2006. Assessing the effects of high methionine intake on DNA methylation. J Nutr 136:1706S–1710S

    CAS  PubMed  Google Scholar 

  • Whitelaw NC, Whitelaw E. 2006. How lifetimes shape epigenotype within and across generations. Hum Mol Genet 15 Spec No 2:R131–7

    Google Scholar 

  • Wilson VL, Jones PA. 1983. DNA methylation decreases in aging but not in immortal cells. Science 220:1055–7

    Article  CAS  PubMed  Google Scholar 

  • Wilson VL, Smith RA, Ma S, Cutler RG. 1987. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem 262:9948–51

    CAS  PubMed  Google Scholar 

  • Wolff GL, Kodell RL, Moore SR, Cooney CA. 1998. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. Faseb J 12:949–57

    CAS  PubMed  Google Scholar 

  • Zhang AP, Yu J, Liu JX, Zhang HY, Du YY, Zhu JD, He G, Li XW, Gu NF, Feng GY, He L. 2007. The DNA methylation profile within the 5'-regulatory region of DRD2 in discordant sib pairs with schizophrenia. Schizophr Res 90:97–103

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario F. Fraga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lara*, E., Calvanese*, V., Fraga, M.F. (2010). Epigenetic Drift and Aging. In: Tollefsbol, T.O. (eds) Epigenetics of Aging. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0639-7_14

Download citation

Publish with us

Policies and ethics