Skip to main content

Magnetic Resonance Spectroscopy: Clinical Applications

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Localized in vivo magnetic resonance spectroscopy (MRS) is a noninvasive technique providing neurochemical information from a selected volume-of-interest (VOI) [1, 2]. Hardware requirements for MRS are the same as for standard magnetic resonance imaging (MRI), although substantially different type of information can be gained by using specific software for data acquisition (pulse sequence) and data processing. High-resolution MRS has been routinely used for several decades in chemistry and biochemistry (under the acronym NMR, nuclear magnetic resonance spectroscopy) to elucidate the structure of biologically important chemical compounds in solutions. The new technology introduced by MRI, specifically, the magnetic field gradients, enabled spatial encoding and spatially selective excitation, which provided basic methodological tools for localized in vivo MRS. In general, MRS can be applied for any nuclei with nonzero magnetic moment (spin), but biological and medical applications are mostly limited to 1H, 13C, 19F, and 31P isotopes. MRS of hydrogen nuclei (protons, 1H) is the most common clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tran T, Ross B, Lin A. Magnetic resonance spectroscopy in neurological diagnosis. Neurol Clin. 2009;27(1):21–60. xiii.

    Article  PubMed  Google Scholar 

  2. van der Graaf M. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J. 2010;39(4):527–40.

    Article  PubMed  CAS  Google Scholar 

  3. Keevil SF. Spatial localization in nuclear magnetic resonance spectroscopy. Phys Med Biol. 2006;51(16):R579–636.

    Article  PubMed  CAS  Google Scholar 

  4. Frahm J, Merboldt KD, Hanicke W. Localized proton spectroscopy using stimulated echoes. J Magn Reson. 1987;72(3):502–8.

    CAS  Google Scholar 

  5. Bottomley PA. Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci. 1987;508:333–48.

    Article  PubMed  CAS  Google Scholar 

  6. Kaiser LG, Young K, Matson GB. Numerical simulations of localized high field 1H MR spectroscopy. J Magn Reson. 2008;195(1):67–75.

    Article  PubMed  CAS  Google Scholar 

  7. Klose U. Measurement sequences for single voxel proton MR spectroscopy. Eur J Radiol. 2008;67(2):194–201.

    Article  PubMed  Google Scholar 

  8. Garwood M, DelaBarre L. The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson. 2001;153(2):155–77.

    Article  PubMed  CAS  Google Scholar 

  9. Haase A, Frahm J, Hanicke W, Matthaei D. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol. 1985;30(4):341–4.

    Article  PubMed  CAS  Google Scholar 

  10. Ogg RJ, Kingsley PB, Taylor JS. WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B. 1994;104(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  11. Tkac I, Gruetter R. Methodology of H NMR Spectroscopy of the Human Brain at Very High Magnetic Fields. Appl Magn Reson. 2005;29(1):139–57.

    Article  PubMed  CAS  Google Scholar 

  12. Tkac I, Starcuk Z, Choi IY, Gruetter R. In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med. 1999;41(4):649–56.

    Article  PubMed  CAS  Google Scholar 

  13. Brown TR, Kincaid BM, Ugurbil K. NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci U S A. 1982;79(11):3523–6.

    Article  PubMed  CAS  Google Scholar 

  14. Zierhut ML, Ozturk-Isik E, Chen AP, Park I, Vigneron DB, Nelson SJ. (1)H spectroscopic imaging of human brain at 3 Tesla: comparison of fast three-dimensional magnetic resonance spectroscopic imaging techniques. J Magn Reson Imaging. 2009;30(3):473–80.

    Article  PubMed  Google Scholar 

  15. Scheenen TW, Heerschap A, Klomp DW. Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses. MAGMA. 2008;21(1–2):95–101.

    Article  PubMed  CAS  Google Scholar 

  16. Scheenen TW, Klomp DW, Wijnen JP, Heerschap A. Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med. 2008;59(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  17. Wijnen JP, van Asten JJ, Klomp DW, Sjobakk TE, Gribbestad IS, Scheenen TW, et al. Short echo time 1H MRSI of the human brain at 3T with adiabatic slice-selective refocusing pulses; reproducibility and variance in a dual center setting. J Magn Reson Imaging. 2010;31(1):61–70.

    Article  PubMed  Google Scholar 

  18. Maudsley AA, Domenig C, Govind V, Darkazanli A, Studholme C, Arheart K, et al. Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med. 2009;61(3):548–59.

    Article  PubMed  CAS  Google Scholar 

  19. Tkac I, Oz G, Adriany G, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4T vs. 7T. Magn Reson Med. 2009;62(4): 868–79.

    Article  PubMed  CAS  Google Scholar 

  20. Hetherington HP, Chu WJ, Gonen O, Pan JW. Robust fully automated shimming of the human brain for high-field 1H spectroscopic imaging. Magn Reson Med. 2006;56(1):26–33.

    Article  PubMed  CAS  Google Scholar 

  21. Gruetter R. Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med. 1993;29(6):804–11.

    Article  PubMed  CAS  Google Scholar 

  22. Gruetter R, Tkac I. Field mapping without reference scan using asymmetric echo-planar techniques. Magn Reson Med. 2000;43(2):319–23.

    Article  PubMed  CAS  Google Scholar 

  23. Cudalbu C, Cavassila S, Rabeson H, van Ormondt D, ­Graveron-Demilly D. Influence of measured and simulated basis sets on metabolite concentration estimates. NMR Biomed. 2008;21(6):627–36.

    Article  PubMed  CAS  Google Scholar 

  24. Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D. Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med. 2001;31(4):269–86.

    Article  PubMed  CAS  Google Scholar 

  25. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672–9.

    Article  PubMed  CAS  Google Scholar 

  26. Provencher SW. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001;14(4):260–4.

    Article  PubMed  CAS  Google Scholar 

  27. Mekle R, Mlynarik V, Gambarota G, Hergt M, Krueger G, Gruetter R. MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn Reson Med. 2009;61(6):1279–85.

    Article  PubMed  CAS  Google Scholar 

  28. Pfeuffer J, Tkac I, Provencher SW, Gruetter R. Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. J Magn Reson. 1999;141(1):104–20.

    Article  PubMed  CAS  Google Scholar 

  29. van der Knaap MS, van der Grond J, van Rijen PC, Faber JAJ, Valk J, Willemse K. Age-dependent changes in localized proton and phosphorus MR spectrscopy of the brain. Radiology. 1990;176:509–15.

    PubMed  Google Scholar 

  30. Huppi PS, Posse S, Lazeyras F, Burri R, Bossi E, Herschkowitz N. Magnetic resonance in preterm and term newborns: 1H-spectrscopy in developing brain. Pediatric Res. 1991;30:574–8.

    CAS  Google Scholar 

  31. Kreis R, Ernst T, Ross BD. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med. 1993;30(4):424–37.

    Article  PubMed  CAS  Google Scholar 

  32. Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, Hanefeld F, et al. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res. 1999;46(4):474–85.

    Article  PubMed  CAS  Google Scholar 

  33. Penrice J, Cady EB, Lorek A, Wylezinska M, Amess PN, Aldridge RF, et al. Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr Res. 1996;40(1):6–14.

    Article  PubMed  CAS  Google Scholar 

  34. Robertson NJ, Kuint J, Counsell TJ, Rutherford TA, Coutts A, Cox IJ, et al. Characterization of cerebral white matter damage in preterm infants using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 2000;20(10):1446–56.

    Article  PubMed  CAS  Google Scholar 

  35. Horska A, Kaufmann WE, Brant LJ, Naidu S, Harris JC, Barker PB. In vivo quantitative proton MRSI study of brain development from childhood to adolescence. J Magn Reson Imaging. 2002;15(2):137–43.

    Article  PubMed  Google Scholar 

  36. Haga KK, Khor YP, Farrall A, Wardlaw JM. A systematic review of brain metabolite changes, measured with 1H magnetic resonance spectroscopy, in healthy aging. Neurobiol Aging. 2009;30(3):353–63.

    Article  PubMed  CAS  Google Scholar 

  37. Kadota T, Horinouchi T, Kuroda C. Development and aging of the cerebrum: assessment with proton MR spectroscopy. AJNR Am J Neuroradiol. 2001;22(1):128–35.

    PubMed  CAS  Google Scholar 

  38. Ando K, Ishikura R, Morikawa T, Tominaga S, Takayasu Y, Miura K, et al. Regional differences of in vivo proton MR spectroscopy in developing human brain. Nippon Igaku Hoshasen Gakkai Zasshi. 2000;60(4):199–204.

    PubMed  CAS  Google Scholar 

  39. Vigneron DB, Barkovich AJ, Noworolski SM, von dem Bussche M, Henry RG, Lu Y, et al. Three-dimensional proton MR spectroscopic imaging of premature and term neonates. AJNR Am J Neuroradiol. 2001;22(7):1424–33.

    PubMed  CAS  Google Scholar 

  40. Girard N, Confort-Gouny S, Schneider J, Barberet M, Chapon F, Viola A, et al. MR imaging of brain maturation. J Neuroradiol. 2007;34(5):290–310.

    Article  PubMed  CAS  Google Scholar 

  41. Arslanoglu A, Bonekamp D, Barker PB, Horska A. Quantitative proton MR spectroscopic imaging of the mesial temporal lobe. J Magn Reson Imaging. 2004;20(5):772–8.

    Article  PubMed  Google Scholar 

  42. Degaonkar MN, Pomper MG, Barker PB. Quantitative proton magnetic resonance spectroscopic imaging: regional variations in the corpus callosum and cortical gray matter. J Magn Reson Imaging. 2005;22(2):175–9.

    Article  PubMed  Google Scholar 

  43. Barker PB, Szopinski K, Horska A. Metabolic heterogeneity at the level of the anterior and posterior commissures. Magn Reson Med. 2000;43(3):348–54.

    Article  PubMed  CAS  Google Scholar 

  44. McLean MA, Woermann FG, Simister RJ, Barker GJ, Duncan JS. In vivo short echo time 1H-magnetic resonance spectroscopic imaging (MRSI) of the temporal lobes. Neuroimage. 2001;14(2):501–9.

    Article  PubMed  CAS  Google Scholar 

  45. Jacobs MA, Horska A, van Zijl PC, Barker PB. Quantitative proton MR spectroscopic imaging of normal human cerebellum and brain stem. Magn Reson Med. 2001;46(4):699–705.

    Article  PubMed  CAS  Google Scholar 

  46. Pouwels PJ, Frahm J. Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med. 1998;39(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  47. Baker EH, Basso G, Barker PB, Smith MA, Bonekamp D, Horska A. Regional apparent metabolite concentrations in young adult brain measured by (1)H MR spectroscopy at 3 Tesla. J Magn Reson Imaging. 2008;27(3):489–99.

    Article  PubMed  Google Scholar 

  48. Nagae-Poetscher LM, Bonekamp D, Barker PB, Brant LJ, Kaufmann WE, Horska A. Asymmetry and gender effect in functionally lateralized cortical regions: a proton MRS imaging study. J Magn Reson Imaging. 2004;19(1):27–33.

    Article  PubMed  Google Scholar 

  49. Perlman JM. Summary proceedings from the neurology group on hypoxic-ischemic encephalopathy. Pediatrics. 2006;117(3 Pt 2):S28–33.

    PubMed  Google Scholar 

  50. Miller SP. Newborn brain injury: looking back to the fetus. Ann Neurol. 2007;61(4):285–7.

    Article  PubMed  Google Scholar 

  51. Chao CP, Zaleski CG, Patton AC. Neonatal hypoxic-ischemic encephalopathy: multimodality imaging findings. Radiographics. 2006;26 Suppl 1:S159–72.

    Article  PubMed  Google Scholar 

  52. Barkovich AJ, Miller SP, Bartha A, Newton N, Hamrick SE, Mukherjee P, et al. MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR Am J Neuroradiol. 2006;27(3):533–47.

    PubMed  CAS  Google Scholar 

  53. Barkovich AJ, Baranski K, Vigneron D, Partridge JC, Hallam DK, Hajnal BL, et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol. 1999;20(8):1399–405.

    PubMed  CAS  Google Scholar 

  54. Cady EB. Magnetic resonance spectroscopy in neonatal hypoxic-ischaemic insults. Childs Nerv Syst. 2001;17(3):145–9.

    Article  PubMed  CAS  Google Scholar 

  55. Pu Y, Li QF, Zeng CM, Gao J, Qi J, Luo DX, et al. Increased detectability of alpha brain glutamate/glutamine in neonatal hypoxic-­ischemic encephalopathy. AJNR Am J Neuroradiol. 2000;21(1):203–12.

    PubMed  CAS  Google Scholar 

  56. Malik GK, Pandey M, Kumar R, Chawla S, Rathi B, Gupta RK. MR imaging and in vivo proton spectroscopy of the brain in neonates with hypoxic ischemic encephalopathy. Eur J Radiol. 2002;43(1):6–13.

    Article  PubMed  CAS  Google Scholar 

  57. Amess PN, Penrice J, Wylezinska M, Lorek A, Townsend J, Wyatt JS, et al. Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain injury. Dev Med Child Neurol. 1999;41(7):436–45.

    Article  PubMed  CAS  Google Scholar 

  58. Cheong JL, Cady EB, Penrice J, Wyatt JS, Cox IJ, Robertson NJ. Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. AJNR Am J Neuroradiol. 2006;27(7):1546–54.

    PubMed  CAS  Google Scholar 

  59. Shanmugalingam S, Thornton JS, Iwata O, Bainbridge A, O’Brien FE, Priest AN, et al. Comparative prognostic utilities of early quantitative magnetic resonance imaging spin-spin relaxometry and proton magnetic resonance spectroscopy in neonatal encephalopathy. Pediatrics. 2006;118(4):1467–77.

    Article  PubMed  Google Scholar 

  60. Ledezma CJ, Fiebach JB, Wintermark M. Modern imaging of the infarct core and the ischemic penumbra in acute stroke patients: CT versus MRI. Expert Rev Cardiovasc Ther. 2009;7(4):395–403.

    Article  PubMed  Google Scholar 

  61. Butcher K, Emery D. Acute stroke imaging. Part I: Fundamentals. Can J Neurol Sci. 2010;37(1):4–16.

    PubMed  CAS  Google Scholar 

  62. Wardlaw JM. Neuroimaging in acute ischaemic stroke: insights into unanswered questions of pathophysiology. J Intern Med. 2010;267(2):172–90.

    Article  PubMed  CAS  Google Scholar 

  63. Gideon P, Sperling B, Arlien-Soborg P, Olsen TS, Henriksen O. Long-term follow-up of cerebral infarction patients with proton magnetic resonance spectroscopy. Stroke. 1994;25(5):967–73.

    Article  PubMed  CAS  Google Scholar 

  64. Saunders DE, Howe FA, van den Boogaart A, McLean MA, Griffiths JR, Brown MM. Continuing ischemic damage after acute middle cerebral artery infarction in humans demonstrated by short-echo proton spectroscopy. Stroke. 1995;26(6):1007–13.

    Article  PubMed  CAS  Google Scholar 

  65. Barker PB, Gillard JH, van Zijl PC, Soher BJ, Hanley DF, Agildere AM, et al. Acute stroke: evaluation with serial proton MR spectroscopic imaging. Radiology. 1994;192(3):723–32.

    PubMed  CAS  Google Scholar 

  66. Felber SR, Aichner FT, Sauter R, Gerstenbrand F. Combined magnetic resonance imaging and proton magnetic resonance spectroscopy of patients with acute stroke. Stroke. 1992;23(8):1106–10.

    Article  PubMed  CAS  Google Scholar 

  67. Lanfermann H, Kugel H, Heindel W, Herholz K, Heiss WD, Lackner K. Metabolic changes in acute and subacute cerebral infarctions: findings at proton MR spectroscopic imaging. Radiology. 1995;196(1):203–10.

    PubMed  CAS  Google Scholar 

  68. Ricci Jr PE. Proton MR spectroscopy in ischemic stroke and other vascular disorders. Neuroimaging Clin N Am. 1998;8(4):881–900.

    PubMed  Google Scholar 

  69. Gillard JH, Barker PB, van Zijl PC, Bryan RN, Oppenheimer SM. Proton MR spectroscopy in acute middle cerebral artery stroke. AJNR Am J Neuroradiol. 1996;17(5):873–86.

    PubMed  CAS  Google Scholar 

  70. Munoz Maniega S, Cvoro V, Chappell FM, Armitage PA, Marshall I, Bastin ME, et al. Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging study. Neurology. 2008;71(24):1993–9.

    Article  PubMed  CAS  Google Scholar 

  71. Wardlaw JM, Marshall I, Wild J, Dennis MS, Cannon J, Lewis SC. Studies of acute ischemic stroke with proton magnetic resonance spectroscopy: relation between time from onset, neurological deficit, metabolite abnormalities in the infarct, blood flow, and clinical outcome. Stroke. 1998;29(8):1618–24.

    Article  PubMed  CAS  Google Scholar 

  72. Cvoro V, Wardlaw JM, Marshall I, Armitage PA, Rivers CS, Bastin ME, et al. Associations between diffusion and perfusion parameters, N-acetyl aspartate, and lactate in acute ischemic stroke. Stroke. 2009;40(3):767–72.

    Article  PubMed  CAS  Google Scholar 

  73. Cvoro V, Marshall I, Armitage PA, Bastin ME, Carpenter T, Rivers CS, et al. MR diffusion and perfusion parameters: relationship to metabolites in acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2010;81(2):185–91.

    Article  PubMed  Google Scholar 

  74. Nicoli F, Lefur Y, Denis B, Ranjeva JP, Confort-Gouny S, Cozzone PJ. Metabolic counterpart of decreased apparent diffusion coefficient during hyperacute ischemic stroke: a brain proton magnetic resonance spectroscopic imaging study. Stroke. 2003;34(7):e82–7.

    Article  PubMed  CAS  Google Scholar 

  75. Ford CC, Griffey RH, Matwiyoff NA, Rosenberg GA. Multivoxel 1H-MRS of stroke. Neurology. 1992;42(7):1408–12.

    PubMed  CAS  Google Scholar 

  76. Sappey-Marinier D, Calabrese G, Hetherington HP, Fisher SN, Deicken R, Van Dyke C, et al. Proton magnetic resonance spectroscopy of human brain: applications to normal white matter, chronic infarction, and MRI white matter signal hyperintensities. Magn Reson Med. 1992;26(2):313–27.

    Article  PubMed  CAS  Google Scholar 

  77. Federico F, Simone IL, Lucivero V, Giannini P, Laddomada G, Mezzapesa DM, et al. Prognostic value of proton magnetic resonance spectroscopy in ischemic stroke. Arch Neurol. 1998;55(4):489–94.

    Article  PubMed  CAS  Google Scholar 

  78. Parsons MW, Li T, Barber PA, Yang Q, Darby DG, Desmond PM, et al. Combined (1)H MR spectroscopy and diffusion-weighted MRI improves the prediction of stroke outcome. Neurology. 2000;55(4):498–505.

    PubMed  CAS  Google Scholar 

  79. Lemesle M, Walker P, Guy F, D’Athis P, Billiar T, Giroud M, et al. Multi-variate analysis predicts clinical outcome 30 days after middle cerebral artery infarction. Acta Neurol Scand. 2000;102(1):11–7.

    Article  PubMed  CAS  Google Scholar 

  80. Glodzik-Sobanska L, Li J, Mosconi L, Slowik A, Walecki J, Szczudlik A, et al. Prefrontal N-acetylaspartate and poststroke recovery: a longitudinal proton spectroscopy study. AJNR Am J Neuroradiol. 2007;28(3):470–4.

    PubMed  CAS  Google Scholar 

  81. Felber SR. Magnetic resonance in the differential diagnosis of dementia. J Neural Transm. 2002;109(7–8):1045–51.

    Article  PubMed  Google Scholar 

  82. Griffith HR, Stewart CC, den Hollander JA. Proton magnetic resonance spectroscopy in dementias and mild cognitive impairment. Int Rev Neurobiol. 2009;84:105–31.

    Article  PubMed  CAS  Google Scholar 

  83. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article  PubMed  CAS  Google Scholar 

  84. Chetelat G, Baron JC. Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage. 2003;18(2):525–41.

    Article  PubMed  Google Scholar 

  85. Kantarci K. 1H magnetic resonance spectroscopy in dementia. Br J Radiol. 2007;80:S146–52. Spec No 2.

    Article  PubMed  CAS  Google Scholar 

  86. Kantarci K, Knopman DS, Dickson DW, Parisi JE, Whitwell JL, Weigand SD, et al. Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology. 2008;248(1):210–20.

    Article  PubMed  Google Scholar 

  87. Schuff N, Capizzano AA, Du AT, Amend DL, O’Neill J, Norman D, et al. Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology. 2002;58(6):928–35.

    PubMed  CAS  Google Scholar 

  88. Chantal S, Braun CM, Bouchard RW, Labelle M, Boulanger Y. Similar 1H magnetic resonance spectroscopic metabolic pattern in the medial temporal lobes of patients with mild cognitive impairment and Alzheimer disease. Brain Res. 2004;1003(1–2):26–35.

    Article  PubMed  CAS  Google Scholar 

  89. Kantarci K, Jack Jr CR, Xu YC, Campeau NG, O’Brien PC, Smith GE, et al. Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease: A 1H MRS study. Neurology. 2000;55(2):210–7.

    PubMed  CAS  Google Scholar 

  90. Herminghaus S, Frolich L, Gorriz C, Pilatus U, Dierks T, Wittsack HJ, et al. Brain metabolism in Alzheimer disease and vascular dementia assessed by in vivo proton magnetic resonance spectroscopy. Psychiatry Res. 2003;123(3):183–90.

    Article  PubMed  CAS  Google Scholar 

  91. Kantarci K, Xu Y, Shiung MM, O’Brien PC, Cha RH, Smith GE, et al. Comparative diagnostic utility of different MR modalities in mild cognitive impairment and Alzheimer’s disease. Dement Geriatr Cogn Disord. 2002;14(4):198–207.

    Article  PubMed  Google Scholar 

  92. Waldman AD, Rai GS. The relationship between cognitive impairment and in vivo metabolite ratios in patients with clinical Alzheimer’s disease and vascular dementia: a proton magnetic resonance spectroscopy study. Neuroradiology. 2003;45(8):507–12.

    Article  PubMed  CAS  Google Scholar 

  93. Kantarci K, Weigand SD, Petersen RC, Boeve BF, Knopman DS, Gunter J, et al. Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging. 2007;28(9):1330–9.

    Article  PubMed  CAS  Google Scholar 

  94. Jellinger KA. Formation and development of Lewy pathology: a critical update. J Neurol. 2009;256 Suppl 3:270–9.

    Article  PubMed  Google Scholar 

  95. Kurz A, Perneczky R. Neurobiology of cognitive disorders. Curr Opin Psychiatry. 2009;22(6):546–51.

    Article  PubMed  Google Scholar 

  96. Watson R, Blamire AM, O’Brien JT. Magnetic resonance imaging in Lewy body dementias. Dement Geriatr Cogn Disord. 2009;28(6):493–506.

    Article  PubMed  Google Scholar 

  97. Lucetti C, Del Dotto P, Gambaccini G, Ceravolo R, Logi C, Berti C, et al. Influences of dopaminergic treatment on motor cortex in Parkinson disease: a MRI/MRS study. Mov Disord. 2007;22(15):2170–5.

    Article  PubMed  Google Scholar 

  98. Langston JW. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol. 2006;59(4):591–6.

    Article  PubMed  Google Scholar 

  99. Eidelberg D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. Trends Neurosci. 2009;32(10):548–57.

    Article  PubMed  CAS  Google Scholar 

  100. Kalaitzakis ME, Pearce RK. The morbid anatomy of dementia in Parkinson’s disease. Acta Neuropathol. 2009;118(5):587–98.

    Article  PubMed  CAS  Google Scholar 

  101. Summerfield C, Gomez-Anson B, Tolosa E, Mercader JM, Marti MJ, Pastor P, et al. Dementia in Parkinson disease: a proton magnetic resonance spectroscopy study. Arch Neurol. 2002;59(9):1415–20.

    Article  PubMed  Google Scholar 

  102. Griffith HR, den Hollander JA, Okonkwo OC, O’Brien T, Watts RL, Marson DC. Brain metabolism differs in Alzheimer’s disease and Parkinson’s disease dementia. Alzheimers Dement. 2008;4(6):421–7.

    Article  PubMed  CAS  Google Scholar 

  103. Griffith HR, den Hollander JA, Okonkwo OC, O’Brien T, Watts RL, Marson DC. Brain N-acetylaspartate is reduced in Parkinson disease with dementia. Alzheimer Dis Assoc Disord. 2008;22(1):54–60.

    Article  PubMed  CAS  Google Scholar 

  104. Oz G, Terpstra M, Tkac I, Aia P, Lowary J, Tuite PJ, et al. Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: detection of high GABA concentrations. Magn Reson Med. 2006;55(2):296–301.

    Article  PubMed  CAS  Google Scholar 

  105. Molina JA, Garcia-Segura JM, Benito-Leon J, Gomez-Escalonilla C, del Ser T, Martinez V, et al. Proton magnetic resonance spectroscopy in dementia with Lewy bodies. Eur Neurol. 2002;48(3):158–63.

    Article  PubMed  CAS  Google Scholar 

  106. Xuan X, Ding M, Gong X. Proton magnetic resonance spectroscopy detects a relative decrease of N-acetylaspartate in the ­hippocampus of patients with dementia with Lewy bodies. J Neuroimaging. 2008;18(2):137–41.

    Article  PubMed  Google Scholar 

  107. Kantarci K, Avula R, Senjem ML, Samikoglu AR, Zhang B, Weigand SD, et al. Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI. Neurology. 2010;74(22):1814–21.

    Article  PubMed  CAS  Google Scholar 

  108. Rabinovici GD, Miller BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs. 2010;24(5):375–98.

    Article  PubMed  CAS  Google Scholar 

  109. Bian H, Grossman M. Frontotemporal lobar degeneration: recent progress in antemortem diagnosis. Acta Neuropathol. 2007;114(1):23–9.

    Article  PubMed  Google Scholar 

  110. Ernst T, Chang L, Melchor R, Mehringer CM. Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. Radiology. 1997;203(3):829–36.

    PubMed  CAS  Google Scholar 

  111. Coulthard E, Firbank M, English P, Welch J, Birchall D, O’Brien J, et al. Proton magnetic resonance spectroscopy in frontotemporal dementia. J Neurol. 2006;253(7):861–8.

    Article  PubMed  CAS  Google Scholar 

  112. Mihara M, Hattori N, Abe K, Sakoda S, Sawada T. Magnetic resonance spectroscopic study of Alzheimer’s disease and frontotemporal dementia/Pick complex. Neuroreport. 2006;17(4):413–6.

    Article  PubMed  Google Scholar 

  113. Garrard P, Schott JM, MacManus DG, Hodges JR, Fox NC, Waldman AD. Posterior cingulate neurometabolite profiles and clinical phenotype in frontotemporal dementia. Cogn Behav Neurol. 2006;19(4):185–9.

    Article  PubMed  Google Scholar 

  114. Kizu O, Yamada K, Ito H, Nishimura T. Posterior cingulate metabolic changes in frontotemporal lobar degeneration detected by magnetic resonance spectroscopy. Neuroradiology. 2004;46(4):277–81.

    Article  PubMed  CAS  Google Scholar 

  115. Kirshner HS. Vascular dementia: a review of recent evidence for prevention and treatment. Curr Neurol Neurosci Rep. 2009;9(6):437–42.

    Article  PubMed  Google Scholar 

  116. MacKay S, Meyerhoff DJ, Constans JM, Norman D, Fein G, Weiner MW. Regional gray and white matter metabolite differences in subjects with AD, with subcortical ischemic vascular dementia, and elderly controls with 1H magnetic resonance spectroscopic imaging. Arch Neurol. 1996;53(2):167–74.

    PubMed  CAS  Google Scholar 

  117. Schuff N, Capizzano AA, Du AT, Amend DL, O’Neill J, Norman D, et al. Different patterns of N-acetylaspartate loss in subcortical ischemic vascular dementia and AD. Neurology. 2003;61(3):358–64.

    PubMed  CAS  Google Scholar 

  118. Kantarci K, Petersen RC, Boeve BF, Knopman DS, Tang-Wai DF, O’Brien PC, et al. 1H MR spectroscopy in common dementias. Neurology. 2004;63(8):1393–8.

    PubMed  CAS  Google Scholar 

  119. Capizzano AA, Schuff N, Amend DL, Tanabe JL, Norman D, Maudsley AA, et al. Subcortical ischemic vascular dementia: assessment with quantitative MR imaging and 1H MR spectroscopy. AJNR Am J Neuroradiol. 2000;21(4):621–30.

    PubMed  CAS  Google Scholar 

  120. MacKay S, Ezekiel F, Di Sclafani V, Meyerhoff DJ, Gerson J, Norman D, et al. Alzheimer disease and subcortical ischemic ­vascular dementia: evaluation by combining MR imaging segmentation and H-1 MR spectroscopic imaging. Radiology. 1996;198(2):537–45.

    PubMed  CAS  Google Scholar 

  121. Kattapong VJ, Brooks WM, Wesley MH, Kodituwakku PW, Rosenberg GA. Proton magnetic resonance spectroscopy of vascular- and Alzheimer-type dementia. Arch Neurol. 1996;53(7):678–80.

    PubMed  CAS  Google Scholar 

  122. Gil JM, Rego AC. Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci. 2008;27(11):2803–20.

    Article  PubMed  Google Scholar 

  123. Rosas HD, Feigin AS, Hersch SM. Using advances in neuroimaging to detect, understand, and monitor disease progression in Huntington’s disease. NeuroRx. 2004;1(2):263–72.

    Article  PubMed  CAS  Google Scholar 

  124. Reynolds Jr NC, Prost RW, Mark LP. Heterogeneity in 1H-MRS profiles of presymptomatic and early manifest Huntington’s disease. Brain Res. 2005;1031(1):82–9.

    Article  PubMed  CAS  Google Scholar 

  125. Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR. Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology. 1993;43(12):2689–95.

    PubMed  CAS  Google Scholar 

  126. Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF. Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol. 1997;41(2):160–5.

    Article  PubMed  CAS  Google Scholar 

  127. Jenkins BG, Rosas HD, Chen YC, Makabe T, Myers R, MacDonald M, et al. 1H NMR spectroscopy studies of Huntington’s disease: correlations with CAG repeat numbers. Neurology. 1998;50(5):1357–65.

    PubMed  CAS  Google Scholar 

  128. Martin WR, Wieler M, Hanstock CC. Is brain lactate increased in Huntington’s disease? J Neurol Sci. 2007;263(1–2):70–4.

    Article  PubMed  CAS  Google Scholar 

  129. Taylor-Robinson SD, Weeks RA, Bryant DJ, Sargentoni J, Marcus CD, Harding AE, et al. Proton magnetic resonance spectroscopy in Huntington’s disease: evidence in favour of the glutamate excitotoxic theory. Mov Disord. 1996;11(2):167–73.

    Article  PubMed  CAS  Google Scholar 

  130. Davie CA, Barker GJ, Quinn N, Tofts PS, Miller DH. Proton MRS in Huntington’s disease. Lancet. 1994;343(8912):1580.

    Article  PubMed  CAS  Google Scholar 

  131. Ruocco HH, Lopes-Cendes I, Li LM, Cendes F. Evidence of thalamic dysfunction in Huntington disease by proton magnetic resonance spectroscopy. Mov Disord. 2007;22(14):2052–6.

    Article  PubMed  Google Scholar 

  132. Gomez-Anson B, Alegret M, Munoz E, Sainz A, Monte GC, Tolosa E. Decreased frontal choline and neuropsychological performance in preclinical Huntington disease. Neurology. 2007;68(12):906–10.

    Article  PubMed  CAS  Google Scholar 

  133. Kalra S, Arnold DL. Magnetic resonance spectroscopy for monitoring neuronal integrity in amyotrophic lateral sclerosis. Adv Exp Med Biol. 2006;576:275–82. discussion 361–273.

    Article  PubMed  CAS  Google Scholar 

  134. Turner MR, Kiernan MC, Leigh PN, Talbot K. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol. 2009;8(1):94–109.

    Article  PubMed  CAS  Google Scholar 

  135. Plaitakis A. Glutamate dysfunction and selective motor neuron degeneration in amyotrophic lateral sclerosis: a hypothesis. Ann Neurol. 1990;28(1):3–8.

    Article  PubMed  CAS  Google Scholar 

  136. Sarchielli P, Pelliccioli GP, Tarducci R, Chiarini P, Presciutti O, Gobbi G, et al. Magnetic resonance imaging and 1H-magnetic resonance spectroscopy in amyotrophic lateral sclerosis. Neuroradiology. 2001;43(3):189–97.

    Article  PubMed  CAS  Google Scholar 

  137. Bowen BC, Pattany PM, Bradley WG, Murdoch JB, Rotta F, Younis AA, et al. MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol. 2000;21(4):647–58.

    PubMed  CAS  Google Scholar 

  138. Pioro EP, Antel JP, Cashman NR, Arnold DL. Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo. Neurology. 1994;44(10):1933–8.

    PubMed  CAS  Google Scholar 

  139. Gredal O, Rosenbaum S, Topp S, Karlsborg M, Strange P, Werdelin L. Quantification of brain metabolites in amyotrophic lateral sclerosis by localized proton magnetic resonance spectroscopy. Neurology. 1997;48(4):878–81.

    PubMed  CAS  Google Scholar 

  140. Pohl C, Block W, Karitzky J, Traber F, Schmidt S, Grothe C, et al. Proton magnetic resonance spectroscopy of the motor cortex in 70 patients with amyotrophic lateral sclerosis. Arch Neurol. 2001;58(5):729–35.

    Article  PubMed  CAS  Google Scholar 

  141. Suhy J, Miller RG, Rule R, Schuff N, Licht J, Dronsky V, et al. Early detection and longitudinal changes in amyotrophic lateral sclerosis by (1)H MRSI. Neurology. 2002;58(5):773–9.

    PubMed  CAS  Google Scholar 

  142. Rule RR, Suhy J, Schuff N, Gelinas DF, Miller RG, Weiner MW. Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004;5(3):141–9.

    Article  PubMed  CAS  Google Scholar 

  143. Kalra S, Hanstock CC, Martin WR, Allen PS, Johnston WS. Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy. Arch Neurol. 2006;63(8):1144–8.

    Article  PubMed  Google Scholar 

  144. Han J, Ma L. Study of the features of proton MR spectroscopy ((1)H-MRS) on amyotrophic lateral sclerosis. J Magn Reson Imaging. 2010;31(2):305–8.

    Article  PubMed  Google Scholar 

  145. Wang S, Poptani H, Woo JH, Desiderio LM, Elman LB, McCluskey LF, et al. Amyotrophic lateral sclerosis: diffusion-tensor and chemical shift MR imaging at 3.0 T. Radiology. 2006;239(3):831–8.

    Article  PubMed  Google Scholar 

  146. Cwik VA, Hanstock CC, Allen PS, Martin WR. Estimation of brainstem neuronal loss in amyotrophic lateral sclerosis with in vivo proton magnetic resonance spectroscopy. Neurology. 1998;50(1):72–7.

    PubMed  CAS  Google Scholar 

  147. Pioro EP, Majors AW, Mitsumoto H, Nelson DR, Ng TC. 1H-MRS evidence of neurodegeneration and excess glutamate + glutamine in ALS medulla. Neurology. 1999;53(1):71–9.

    PubMed  CAS  Google Scholar 

  148. Kalra S, Tai P, Genge A, Arnold DL. Rapid improvement in cortical neuronal integrity in amyotrophic lateral sclerosis detected by proton magnetic resonance spectroscopic imaging. J Neurol. 2006;253(8):1060–3.

    Article  PubMed  CAS  Google Scholar 

  149. Kalra S, Vitale A, Cashman NR, Genge A, Arnold DL. Cerebral degeneration predicts survival in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2006;77(11):1253–5.

    Article  PubMed  CAS  Google Scholar 

  150. Kastrup O, Wanke I, Maschke M. Neuroimaging of infections of the central nervous system. Semin Neurol. 2008;28(4):511–22.

    Article  PubMed  Google Scholar 

  151. Karampekios S, Hesselink J. Cerebral infections. Eur Radiol. 2005;15(3):485–93.

    Article  PubMed  Google Scholar 

  152. Garg M, Gupta RK, Husain M, Chawla S, Chawla J, Kumar R, et al. Brain abscesses: etiologic categorization with in vivo proton MR spectroscopy. Radiology. 2004;230(2):519–27.

    Article  PubMed  Google Scholar 

  153. Kapsalaki EZ, Gotsis ED, Fountas KN. The role of proton magnetic resonance spectroscopy in the diagnosis and categorization of cerebral abscesses. Neurosurg Focus. 2008;24(6):E7.

    Article  PubMed  Google Scholar 

  154. Shukla-Dave A, Gupta RK, Roy R, Husain N, Paul L, Venkatesh SK, et al. Prospective evaluation of in vivo proton MR spectroscopy in differentiation of similar appearing intracranial cystic lesions. Magn Reson Imaging. 2001;19(1):103–10.

    Article  PubMed  CAS  Google Scholar 

  155. Gupta RK, Vatsal DK, Husain N, Chawla S, Prasad KN, Roy R, et al. Differentiation of tuberculous from pyogenic brain abscesses with in vivo proton MR spectroscopy and magnetization transfer MR imaging. AJNR Am J Neuroradiol. 2001;22(8):1503–9.

    PubMed  CAS  Google Scholar 

  156. Lai PH, Li KT, Hsu SS, Hsiao CC, Yip CW, Ding S, et al. Pyogenic brain abscess: findings from in vivo 1.5-T and 11.7-T in vitro proton MR spectroscopy. AJNR Am J Neuroradiol. 2005;26(2):279–88.

    PubMed  Google Scholar 

  157. Lai PH, Ho JT, Chen WL, Hsu SS, Wang JS, Pan HB, et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol. 2002;23(8):1369–77.

    PubMed  Google Scholar 

  158. Chiang IC, Hsieh TJ, Chiu ML, Liu GC, Kuo YT, Lin WC. Distinction between pyogenic brain abscess and necrotic brain tumour using 3-tesla MR spectroscopy, diffusion and perfusion imaging. Br J Radiol. 2009;82(982):813–20.

    Article  PubMed  Google Scholar 

  159. Rock RB, Olin M, Baker CA, Molitor TW, Peterson PK. Central nervous system tuberculosis: pathogenesis and clinical aspects. Clin Microbiol Rev. 2008;21(2):243–61. table of contents.

    Article  PubMed  CAS  Google Scholar 

  160. Be NA, Kim KS, Bishai WR, Jain SK. Pathogenesis of central nervous system tuberculosis. Curr Mol Med. 2009;9(2):94–9.

    Article  PubMed  CAS  Google Scholar 

  161. Morgado C, Ruivo N. Imaging meningo-encephalic tuberculosis. Eur J Radiol. 2005;55(2):188–92.

    Article  PubMed  Google Scholar 

  162. Poptani H, Gupta RK, Roy R, Pandey R, Jain VK, Chhabra DK. Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. AJNR Am J Neuroradiol. 1995;16(8):1593–603.

    PubMed  CAS  Google Scholar 

  163. Jayasundar R, Singh VP, Raghunathan P, Jain K, Banerji AK. Inflammatory granulomas: evaluation with proton MRS. NMR Biomed. 1999;12(3):139–44.

    Article  PubMed  CAS  Google Scholar 

  164. Gupta RK, Roy R, Dev R, Husain M, Poptani H, Pandey R, et al. Finger printing of Mycobacterium tuberculosis in patients with intracranial tuberculomas by using in vivo, ex vivo, and in vitro magnetic resonance spectroscopy. Magn Reson Med. 1996;36(6):829–33.

    Article  PubMed  CAS  Google Scholar 

  165. Poptani H, Kaartinen J, Gupta RK, Niemitz M, Hiltunen Y, Kauppinen RA. Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. J Cancer Res Clin Oncol. 1999;125(6):343–9.

    Article  PubMed  CAS  Google Scholar 

  166. Baringer JR. Herpes simplex infections of the nervous system. Neurol Clin. 2008;26(3):657–74. viii.

    Article  PubMed  Google Scholar 

  167. Menon DK, Sargentoni J, Peden CJ, Bell JD, Cox IJ, Coutts GA, et al. Proton MR spectroscopy in herpes simplex encephalitis: assessment of neuronal loss. J Comput Assist Tomogr. 1990;14(3):449–52.

    Article  PubMed  CAS  Google Scholar 

  168. Takanashi J, Sugita K, Ishii M, Aoyagi M, Niimi H. Longitudinal MR imaging and proton MR spectroscopy in herpes simplex encephalitis. J Neurol Sci. 1997;149(1):99–102.

    Article  PubMed  CAS  Google Scholar 

  169. Salvan AM, Confort-Gouny S, Cozzone PJ, Vion-Dury J. Atlas of brain proton magnetic resonance spectra. Part III: Viral infections. J Neuroradiol. 1999;26(3):154–61.

    PubMed  CAS  Google Scholar 

  170. Anthony IC, Bell JE. The Neuropathology of HIV/AIDS. Int Rev Psychiatry. 2008;20(1):15–24.

    Article  PubMed  CAS  Google Scholar 

  171. Singer EJ, Valdes-Sueiras M, Commins D, Levine A. Neurologic presentations of AIDS. Neurol Clin. 2010;28(1):253–75.

    Article  PubMed  Google Scholar 

  172. Thurnher MM, Donovan Post MJ. Neuroimaging in the brain in HIV-1-infected patients. Neuroimaging Clin N Am. 2008;18(1):93–117. viii.

    Article  PubMed  Google Scholar 

  173. Tarasow E, Wiercinska-Drapalo A, Kubas B, Dzienis W, Orzechowska-Bobkiewicz A, Prokopowicz D, et al. Cerebral MR spectroscopy in neurologically asymptomatic HIV-infected patients. Acta Radiol. 2003;44(2):206–12.

    Article  PubMed  CAS  Google Scholar 

  174. Meyerhoff DJ, Bloomer C, Cardenas V, Norman D, Weiner MW, Fein G. Elevated subcortical choline metabolites in cognitively and clinically asymptomatic HIV+ patients. Neurology. 1999;52(5):995–1003.

    PubMed  CAS  Google Scholar 

  175. Tracey I, Carr CA, Guimaraes AR, Worth JL, Navia BA, Gonzalez RG. Brain choline-containing compounds are elevated in HIV-positive patients before the onset of AIDS dementia complex: A proton magnetic resonance spectroscopic study. Neurology. 1996;46(3):783–8.

    PubMed  CAS  Google Scholar 

  176. Chang L, Ernst T, Leonido-Yee M, Witt M, Speck O, Walot I, et al. Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology. 1999;53(4):782–9.

    PubMed  CAS  Google Scholar 

  177. Winston A, Duncombe C, Li PC, Gill JM, Kerr SJ, Puls R, et al. Does choice of combination antiretroviral therapy (cART) alter changes in cerebral function testing after 48 weeks in treatment-naive, HIV-1-infected individuals commencing cART? A randomized, controlled study. Clin Infect Dis. 2010;50(6):920–9.

    Article  PubMed  CAS  Google Scholar 

  178. Woods SP, Moore DJ, Weber E, Grant I. Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev. 2009;19(2):152–68.

    Article  PubMed  Google Scholar 

  179. Chang L, Ernst T, Witt MD, Ames N, Gaiefsky M, Miller E. Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-naive HIV patients. Neuroimage. 2002;17(3):1638–48.

    Article  PubMed  Google Scholar 

  180. Paul RH, Ernst T, Brickman AM, Yiannoutsos CT, Tate DF, Cohen RA, et al. Relative sensitivity of magnetic resonance ­spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV. J Int Neuropsychol Soc. 2008;14(5):725–33.

    Article  PubMed  Google Scholar 

  181. Mohamed MA, Lentz MR, Lee V, Halpern EF, Sacktor N, Selnes O, et al. Factor analysis of proton MR spectroscopic imaging data in HIV infection: metabolite-derived factors help identify infection and dementia. Radiology. 2010;254(2):577–86.

    Article  PubMed  Google Scholar 

  182. Lentz MR, Kim WK, Lee V, Bazner S, Halpern EF, Venna N, et al. Changes in MRS neuronal markers and T cell phenotypes observed during early HIV infection. Neurology. 2009;72(17):1465–72.

    Article  PubMed  CAS  Google Scholar 

  183. Chang L, Miller BL, McBride D, Cornford M, Oropilla G, Buchthal S, et al. Brain lesions in patients with AIDS: H-1 MR spectroscopy. Radiology. 1995;197(2):525–31.

    PubMed  CAS  Google Scholar 

  184. Simone IL, Federico F, Tortorella C, Andreula CF, Zimatore GB, Giannini P, et al. Localised 1H-MR spectroscopy for metabolic characterisation of diffuse and focal brain lesions in patients infected with HIV. J Neurol Neurosurg Psychiatry. 1998;64(4):516–23.

    Article  PubMed  CAS  Google Scholar 

  185. Kingsley PB, Shah TC, Woldenberg R. Identification of diffuse and focal brain lesions by clinical magnetic resonance spectroscopy. NMR Biomed. 2006;19(4):435–62.

    Article  PubMed  CAS  Google Scholar 

  186. Zacharia TT, Law M, Naidich TP, Leeds NE. Central nervous system lymphoma characterization by diffusion-weighted imaging and MR spectroscopy. J Neuroimaging. 2008;18(4):411–7.

    Article  PubMed  Google Scholar 

  187. Iranzo A, Moreno A, Pujol J, Marti-Fabregas J, Domingo P, Molet J, et al. Proton magnetic resonance spectroscopy pattern of progressive multifocal leukoencephalopathy in AIDS. J Neurol Neurosurg Psychiatry. 1999;66(4):520–3.

    Article  PubMed  CAS  Google Scholar 

  188. Chang L, Ernst T, Tornatore C, Aronow H, Melchor R, Walot I, et al. Metabolite abnormalities in progressive multifocal leukoencephalopathy by proton magnetic resonance spectroscopy. Neurology. 1997;48(4):836–45.

    PubMed  CAS  Google Scholar 

  189. Anlar O. Treatment of multiple sclerosis. CNS Neurol Disord Drug Targets. 2009;8(3):167–74.

    PubMed  CAS  Google Scholar 

  190. Neumann H. Molecular mechanisms of axonal damage in inflammatory central nervous system diseases. Curr Opin Neurol. 2003;16(3):267–73.

    Article  PubMed  CAS  Google Scholar 

  191. Matthews PM. Brain imaging of multiple sclerosis: the next 10 years. Neuroimaging Clin N Am. 2009;19(1):101–12.

    Article  PubMed  Google Scholar 

  192. Narayanan S, De Stefano N, Francis GS, Arnaoutelis R, Caramanos Z, Collins DL, et al. Axonal metabolic recovery in multiple sclerosis patients treated with interferon beta-1b. J Neurol. 2001;248(11):979–86.

    Article  PubMed  CAS  Google Scholar 

  193. Khan O, Shen Y, Bao F, Caon C, Tselis A, Latif Z, et al. Long-term study of brain 1H-MRS study in multiple sclerosis: effect of ­glatiramer acetate therapy on axonal metabolic function and feasibility of long-term H-MRS monitoring in multiple sclerosis. J Neuroimaging. 2008;18(3):314–9.

    Article  PubMed  Google Scholar 

  194. De Stefano N, Narayanan S, Francis GS, Arnaoutelis R, Tartaglia MC, Antel JP, et al. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol. 2001;58(1):65–70.

    Article  PubMed  Google Scholar 

  195. Filippi M, Bozzali M, Rovaris M, Gonen O, Kesavadas C, Ghezzi A, et al. Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain. 2003;126(Pt 2):433–7.

    Article  PubMed  CAS  Google Scholar 

  196. Sarchielli P, Presciutti O, Pelliccioli GP, Tarducci R, Gobbi G, Chiarini P, et al. Absolute quantification of brain metabolites by proton magnetic resonance spectroscopy in normal-appearing white matter of multiple sclerosis patients. Brain. 1999;122(Pt 3):513–21.

    Article  PubMed  Google Scholar 

  197. Chard DT, Griffin CM, McLean MA, Kapeller P, Kapoor R, Thompson AJ, et al. Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing-­remitting multiple sclerosis. Brain. 2002;125(Pt 10):2342–52.

    Article  PubMed  CAS  Google Scholar 

  198. Bruhn H, Frahm J, Merboldt KD, Hanicke W, Hanefeld F, Christen HJ, et al. Multiple sclerosis in children: cerebral metabolic alterations monitored by localized proton magnetic resonance spectroscopy in vivo. Ann Neurol. 1992;32(2):140–50.

    Article  PubMed  CAS  Google Scholar 

  199. Mader I, Seeger U, Weissert R, Klose U, Naegele T, Melms A, et al. Proton MR spectroscopy with metabolite-nulling reveals elevated macromolecules in acute multiple sclerosis. Brain. 2001;124(Pt 5):953–61.

    Article  PubMed  CAS  Google Scholar 

  200. De Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL. Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol. 1995;38(6):901–9.

    Article  PubMed  Google Scholar 

  201. Srinivasan R, Sailasuta N, Hurd R, Nelson S, Pelletier D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain. 2005;128(Pt 5):1016–25.

    Article  PubMed  Google Scholar 

  202. Narayana PA, Doyle TJ, Lai D, Wolinsky JS. Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol. 1998;43(1):56–71.

    Article  PubMed  CAS  Google Scholar 

  203. Bitsch A, Bruhn H, Vougioukas V, Stringaris A, Lassmann H, Frahm J, et al. Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol. 1999;20(9):1619–27.

    PubMed  CAS  Google Scholar 

  204. De Stefano N, Matthews PM, Arnold DL. Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med. 1995;34(5):721–7.

    Article  PubMed  Google Scholar 

  205. De Stefano N, Filippi M. MR spectroscopy in multiple sclerosis. J Neuroimaging. 2007;17 Suppl 1:31S–5.

    Article  PubMed  Google Scholar 

  206. Wattjes MP, Harzheim M, Lutterbey GG, Klotz L, Schild HH, Traber F. Axonal damage but no increased glial cell activity in the normal-appearing white matter of patients with clinically isolated syndromes suggestive of multiple sclerosis using high-field magnetic resonance spectroscopy. AJNR Am J Neuroradiol. 2007;28(8):1517–22.

    Article  PubMed  CAS  Google Scholar 

  207. Fu L, Matthews PM, De Stefano N, Worsley KJ, Narayanan S, Francis GS, et al. Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain. 1998;121(Pt 1):103–13.

    Article  PubMed  Google Scholar 

  208. Falini A, Calabrese G, Filippi M, Origgi D, Lipari S, Colombo B, et al. Benign versus secondary-progressive multiple sclerosis: the potential role of proton MR spectroscopy in defining the nature of disability. AJNR Am J Neuroradiol. 1998;19(2):223–9.

    PubMed  CAS  Google Scholar 

  209. De Stefano N, Narayanan S, Francis SJ, Smith S, Mortilla M, Tartaglia MC, et al. Diffuse axonal and tissue injury in patients with multiple sclerosis with low cerebral lesion load and no disability. Arch Neurol. 2002;59(10):1565–71.

    Article  PubMed  Google Scholar 

  210. Inglese M, Li BS, Rusinek H, Babb JS, Grossman RI, Gonen O. Diffusely elevated cerebral choline and creatine in relapsing-­remitting multiple sclerosis. Magn Reson Med. 2003;50(1):190–5.

    Article  PubMed  CAS  Google Scholar 

  211. Kapeller P, McLean MA, Griffin CM, Chard D, Parker GJ, Barker GJ, et al. Preliminary evidence for neuronal damage in ­cortical grey matter and normal appearing white matter in short duration relapsing-remitting multiple sclerosis: a quantitative MR spectroscopic imaging study. J Neurol. 2001;248(2):131–8.

    Article  PubMed  CAS  Google Scholar 

  212. Sarchielli P, Presciutti O, Tarducci R, Gobbi G, Alberti A, Pelliccioli GP, et al. Localized (1)H magnetic resonance spectroscopy in mainly cortical gray matter of patients with multiple sclerosis. J Neurol. 2002;249(7):902–10.

    Article  PubMed  CAS  Google Scholar 

  213. Adalsteinsson E, Langer-Gould A, Homer RJ, Rao A, Sullivan EV, Lima CA, et al. Gray matter N-acetyl aspartate deficits in secondary progressive but not relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol. 2003;24(10):1941–5.

    PubMed  Google Scholar 

  214. Cifelli A, Arridge M, Jezzard P, Esiri MM, Palace J, Matthews PM. Thalamic neurodegeneration in multiple sclerosis. Ann Neurol. 2002;52(5):650–3.

    Article  PubMed  Google Scholar 

  215. Wylezinska M, Cifelli A, Jezzard P, Palace J, Alecci M, Matthews PM. Thalamic neurodegeneration in relapsing-remitting multiple sclerosis. Neurology. 2003;60(12):1949–54.

    PubMed  CAS  Google Scholar 

  216. Inglese M, Liu S, Babb JS, Mannon LJ, Grossman RI, Gonen O. Three-dimensional proton spectroscopy of deep gray matter nuclei in relapsing-remitting MS. Neurology. 2004;63(1):170–2.

    PubMed  CAS  Google Scholar 

  217. Sastre-Garriga J, Ingle GT, Chard DT, Ramio-Torrenta L, McLean MA, Miller DH, et al. Metabolite changes in normal-appearing gray and white matter are linked with disability in early primary progressive multiple sclerosis. Arch Neurol. 2005;62(4):569–73.

    Article  PubMed  CAS  Google Scholar 

  218. Lassmann H. Acute disseminated encephalomyelitis and multiple sclerosis. Brain. 2010;133(Pt 2):317–9.

    Article  PubMed  Google Scholar 

  219. Bizzi A, Ulug AM, Crawford TO, Passe T, Bugiani M, Bryan RN, et al. Quantitative proton MR spectroscopic imaging in acute disseminated encephalomyelitis. AJNR Am J Neuroradiol. 2001;22(6):1125–30.

    PubMed  CAS  Google Scholar 

  220. Gabis LV, Panasci DJ, Andriola MR, Huang W. Acute disseminated encephalomyelitis: an MRI/MRS longitudinal study. Pediatr Neurol. 2004;30(5):324–9.

    Article  PubMed  Google Scholar 

  221. Mader I, Wolff M, Nagele T, Niemann G, Grodd W, Kuker W. MRI and proton MR spectroscopy in acute disseminated encephalomyelitis. Childs Nerv Syst. 2005;21(7):566–72.

    Article  PubMed  CAS  Google Scholar 

  222. Balasubramanya KS, Kovoor JM, Jayakumar PN, Ravishankar S, Kamble RB, Panicker J, et al. Diffusion-weighted imaging and proton MR spectroscopy in the characterization of acute disseminated encephalomyelitis. Neuroradiology. 2007;49(2):177–83.

    Article  PubMed  CAS  Google Scholar 

  223. Ben Sira L, Miller E, Artzi M, Fattal-Valevski A, Constantini S, Ben Bashat D. 1H-MRS for the diagnosis of acute disseminated encephalomyelitis: insight into the acute-disease stage. Pediatr Radiol. 2010;40(1):106–13.

    Article  PubMed  Google Scholar 

  224. Woermann FG, Vollmar C. Clinical MRI in children and adults with focal epilepsy: a critical review. Epilepsy Behav. 2009;15(1):40–9.

    Article  PubMed  Google Scholar 

  225. Cascino GD. Neuroimaging in epilepsy: diagnostic strategies in partial epilepsy. Semin Neurol. 2008;28(4):523–32.

    Article  PubMed  Google Scholar 

  226. Jackson GD, Berkovic SF, Duncan JS, Connelly A. Optimizing the diagnosis of hippocampal sclerosis using MR imaging. AJNR Am J Neuroradiol. 1993;14(3):753–62.

    PubMed  CAS  Google Scholar 

  227. Van Paesschen W, Connelly A, Johnson CL, Duncan JS. The amygdala and intractable temporal lobe epilepsy: a quantitative magnetic resonance imaging study. Neurology. 1996;47(4):1021–31.

    PubMed  Google Scholar 

  228. Ende GR, Laxer KD, Knowlton RC, Matson GB, Schuff N, Fein G, et al. Temporal lobe epilepsy: bilateral hippocampal metabolite changes revealed at proton MR spectroscopic imaging. Radiology. 1997;202(3):809–17.

    PubMed  CAS  Google Scholar 

  229. Breiter SN, Arroyo S, Mathews VP, Lesser RP, Bryan RN, Barker PB. Proton MR spectroscopy in patients with seizure disorders. AJNR Am J Neuroradiol. 1994;15(2):373–84.

    PubMed  CAS  Google Scholar 

  230. Capizzano AA, Vermathen P, Laxer KD, Matson GB, Maudsley AA, Soher BJ, et al. Multisection proton MR spectroscopy for mesial temporal lobe epilepsy. AJNR Am J Neuroradiol. 2002;23(8):1359–68.

    PubMed  Google Scholar 

  231. Simister RJ, Woermann FG, McLean MA, Bartlett PA, Barker GJ, Duncan JS. A short-echo-time proton magnetic resonance spectroscopic imaging study of temporal lobe epilepsy. Epilepsia. 2002;43(9):1021–31.

    Article  PubMed  Google Scholar 

  232. Ng TC, Comair YG, Xue M, So N, Majors A, Kolem H, et al. Temporal lobe epilepsy: presurgical localization with proton chemical shift imaging. Radiology. 1994;193(2):465–72.

    PubMed  CAS  Google Scholar 

  233. Hetherington HP, Kuzniecky RI, Pan JW, Vaughan JT, Twieg DB, Pohost GM. Application of high field spectroscopic imaging in the evaluation of temporal lobe epilepsy. Magn Reson Imaging. 1995;13(8):1175–80.

    Article  PubMed  CAS  Google Scholar 

  234. Vermathen P, Laxer KD, Schuff N, Matson GB, Weiner MW. Evidence of neuronal injury outside the medial temporal lobe in temporal lobe epilepsy: N-acetylaspartate concentration reductions detected with multisection proton MR spectroscopic ­imaging–initial experience. Radiology. 2003;226(1):195–202.

    Article  PubMed  Google Scholar 

  235. Mueller SG, Suhy J, Laxer KD, Flenniken DL, Axelrad J, Capizzano AA, et al. Reduced extrahippocampal NAA in mesial temporal lobe epilepsy. Epilepsia. 2002;43(10):1210–6.

    Article  PubMed  Google Scholar 

  236. Doelken MT, Stefan H, Pauli E, Stadlbauer A, Struffert T, Engelhorn T, et al. (1)H-MRS profile in MRI positive- versus MRI negative patients with temporal lobe epilepsy. Seizure. 2008;17(6):490–7.

    Article  PubMed  CAS  Google Scholar 

  237. Helms G, Ciumas C, Kyaga S, Savic I. Increased thalamus levels of glutamate and glutamine (Glx) in patients with idiopathic generalised epilepsy. J Neurol Neurosurg Psychiatry. 2006;77(4):489–94.

    Article  PubMed  CAS  Google Scholar 

  238. Vermathen P, Laxer KD, Matson GB, Weiner MW. Hippocampal structures: anteroposterior N-acetylaspartate differences in patients with epilepsy and control subjects as shown with proton MR spectroscopic imaging. Radiology. 2000;214(2):403–10.

    PubMed  CAS  Google Scholar 

  239. Connelly A, Van Paesschen W, Porter DA, Johnson CL, Duncan JS, Gadian DG. Proton magnetic resonance spectroscopy in MRI-negative temporal lobe epilepsy. Neurology. 1998;51(1):61–6.

    PubMed  CAS  Google Scholar 

  240. Colon AJ, Hofman P, Ossenblok PP, Jansen JF, Ter Beek LC, Berting R, et al. MRS-lateralisation index in patients with epilepsy and focal cortical dysplasia or a MEG-focus using bilateral single voxels. Epilepsy Res. 2010;89(1):148–53.

    Article  PubMed  CAS  Google Scholar 

  241. Hetherington HP, Kuzniecky RI, Vives K, Devinsky O, Pacia S, Luciano D, et al. A subcortical network of dysfunction in TLE measured by magnetic resonance spectroscopy. Neurology. 2007;69(24):2256–65.

    Article  PubMed  CAS  Google Scholar 

  242. Brazdil M, Marecek R, Fojtikova D, Mikl M, Kuba R, Krupa P, et al. Correlation study of optimized voxel-based morphometry and (1)H MRS in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Hum Brain Mapp. 2009;30(4):1226–35.

    Article  PubMed  Google Scholar 

  243. Park SA, Kim GS, Lee SK, Lim SR, Heo K, Park SC, et al. Interictal epileptiform discharges relate to 1H-MRS-detected metabolic abnormalities in mesial temporal lobe epilepsy. Epilepsia. 2002;43(11):1385–9.

    Article  PubMed  Google Scholar 

  244. Kuzniecky R, Palmer C, Hugg J, Martin R, Sawrie S, Morawetz R, et al. Magnetic resonance spectroscopic imaging in temporal lobe epilepsy: neuronal dysfunction or cell loss? Arch Neurol. 2001;58(12):2048–53.

    Article  PubMed  CAS  Google Scholar 

  245. Hugg JW, Kuzniecky RI, Gilliam FG, Morawetz RB, Fraught RE, Hetherington HP. Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1H magnetic resonance spectroscopic imaging. Ann Neurol. 1996;40(2):236–9.

    Article  PubMed  CAS  Google Scholar 

  246. Cendes F, Andermann F, Dubeau F, Matthews PM, Arnold DL. Normalization of neuronal metabolic dysfunction after surgery for temporal lobe epilepsy. Evidence from proton MR spectroscopic imaging. Neurology. 1997;49(6):1525–33.

    PubMed  CAS  Google Scholar 

  247. Vermathen P, Ende G, Laxer KD, Walker JA, Knowlton RC, Barbaro NM, et al. Temporal lobectomy for epilepsy: recovery of the contralateral hippocampus measured by (1)H MRS. Neurology. 2002;59(4):633–6.

    PubMed  CAS  Google Scholar 

  248. Faerber EN, Poussaint TY. Magnetic resonance of metabolic and degenerative diseases in children. Top Magn Reson Imaging. 2002;13(1):3–21.

    Article  PubMed  Google Scholar 

  249. Barkovich AJ. An approach to MRI of metabolic disorders in children. J Neuroradiol. 2007;34(2):75–88.

    PubMed  CAS  Google Scholar 

  250. Schulze A. Creatine deficiency syndromes. Mol Cell Biochem. 2003;244(1–2):143–50.

    Article  PubMed  CAS  Google Scholar 

  251. Stockler S, Schutz PW, Salomons GS. Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell Biochem. 2007;46:149–66.

    Article  PubMed  Google Scholar 

  252. Stockler S, Holzbach U, Hanefeld F, Marquardt I, Helms G, Requart M, et al. Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res. 1994;36(3):409–13.

    PubMed  CAS  Google Scholar 

  253. Verbruggen KT, Sijens PE, Schulze A, Lunsing RJ, Jakobs C, Salomons GS, et al. Successful treatment of a guanidinoacetate methyltransferase deficient patient: findings with relevance to treatment strategy and pathophysiology. Mol Genet Metab. 2007;91(3):294–6.

    Article  PubMed  CAS  Google Scholar 

  254. Bianchi MC, Tosetti M, Fornai F, Alessandri MG, Cipriani P, De Vito G, et al. Reversible brain creatine deficiency in two sisters with normal blood creatine level. Ann Neurol. 2000;47(4):511–3.

    Article  PubMed  CAS  Google Scholar 

  255. Cecil KM, Salomons GS, Ball Jr WS, Wong B, Chuck G, Verhoeven NM, et al. Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann Neurol. 2001;49(3):401–4.

    Article  PubMed  CAS  Google Scholar 

  256. Martin E, Capone A, Schneider J, Hennig J, Thiel T. Absence of N-acetylaspartate in the human brain: impact on neurospectroscopy? Ann Neurol. 2001;49(4):518–21.

    Article  PubMed  CAS  Google Scholar 

  257. Harding C. Progress toward cell-directed therapy for phenylketonuria. Clin Genet. 2008;74(2):97–104.

    Article  PubMed  CAS  Google Scholar 

  258. Moller HE, Ullrich K, Weglage J. In vivo proton magnetic resonance spectroscopy in phenylketonuria. Eur J Pediatr. 2000;159 Suppl 2:S121–5.

    Article  PubMed  CAS  Google Scholar 

  259. Pietz J, Kreis R, Boesch C, Penzien J, Rating D, Herschkowitz N. The dynamics of brain concentrations of phenylalanine and its clinical significance in patients with phenylketonuria determined by in vivo 1H magnetic resonance spectroscopy. Pediatr Res. 1995;38(5):657–63.

    Article  PubMed  CAS  Google Scholar 

  260. Briere JJ, Favier J, El Ghouzzi V, Djouadi F, Benit P, Gimenez AP, et al. Succinate dehydrogenase deficiency in human. Cell Mol Life Sci. 2005;62(19–20):2317–24.

    Article  PubMed  CAS  Google Scholar 

  261. Brockmann K, Bjornstad A, Dechent P, Korenke CG, Smeitink J, Trijbels JM, et al. Succinate in dystrophic white matter: a proton magnetic resonance spectroscopy finding characteristic for complex II deficiency. Ann Neurol. 2002;52(1):38–46.

    Article  PubMed  CAS  Google Scholar 

  262. Chuang DT, Chuang JL, Wynn RM. Lessons from genetic disorders of branched-chain amino acid metabolism. J Nutr. 2006;136(1 Suppl):243S–9.

    PubMed  CAS  Google Scholar 

  263. Heindel W, Kugel H, Wendel U, Roth B, Benz-Bohm G. Proton magnetic resonance spectroscopy reflects metabolic decompensation in maple syrup urine disease. Pediatr Radiol. 1995;25(4):296–9.

    Article  PubMed  CAS  Google Scholar 

  264. Jan W, Zimmerman RA, Wang ZJ, Berry GT, Kaplan PB, Kaye EM. MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology. 2003;45(6):393–9.

    Article  PubMed  Google Scholar 

  265. Kure S, Tada K, Narisawa K. Nonketotic hyperglycinemia: biochemical, molecular, and neurological aspects. Jpn J Hum Genet. 1997;42(1):13–22.

    Article  PubMed  CAS  Google Scholar 

  266. Shah DK, Tingay DG, Fink AM, Hunt RW, Dargaville PA. Magnetic resonance imaging in neonatal nonketotic hyperglycinemia. Pediatr Neurol. 2005;33(1):50–2.

    Article  PubMed  Google Scholar 

  267. Heindel W, Kugel H, Roth B. Noninvasive detection of increased glycine content by proton MR spectroscopy in the brains of two infants with nonketotic hyperglycinemia. AJNR Am J Neuroradiol. 1993;14(3):629–35.

    PubMed  CAS  Google Scholar 

  268. Gabis L, Parton P, Roche P, Lenn N, Tudorica A, Huang W. In vivo 1H magnetic resonance spectroscopic measurement of brain glycine levels in nonketotic hyperglycinemia. J Neuroimaging. 2001;11(2):209–11.

    Article  PubMed  CAS  Google Scholar 

  269. Matalon R, Michals-Matalon K. Biochemistry and molecular biology of Canavan disease. Neurochem Res. 1999;24(4):507–13.

    Article  PubMed  CAS  Google Scholar 

  270. Austin SJ, Connelly A, Gadian DG, Benton JS, Brett EM. Localized 1H NMR spectroscopy in Canavan’s disease: a report of two cases. Magn Reson Med. 1991;19(2):439–45.

    Article  PubMed  CAS  Google Scholar 

  271. Barker PB, Bryan RN, Kumar AJ, Naidu S. Proton NMR spectroscopy of Canavan’s disease. Neuropediatrics. 1992;23(5):263–7.

    Article  PubMed  CAS  Google Scholar 

  272. Wittsack HJ, Kugel H, Roth B, Heindel W. Quantitative ­measurements with localized 1H MR spectroscopy in children with Canavan’s ­disease. J Magn Reson Imaging. 1996;6(6):889–93.

    Article  PubMed  CAS  Google Scholar 

  273. Saneto RP, Friedman SD, Shaw DW. Neuroimaging of mitochondrial disease. Mitochondrion. 2008;8(5–6):396–413.

    Article  PubMed  CAS  Google Scholar 

  274. Finsterer J. Central nervous system imaging in mitochondrial disorders. Can J Neurol Sci. 2009;36(2):143–53.

    Article  PubMed  CAS  Google Scholar 

  275. De Stefano N, Matthews PM, Ford B, Genge A, Karpati G, Arnold DL. Short-term dichloroacetate treatment improves indices of cerebral metabolism in patients with mitochondrial disorders. Neurology. 1995;45(6):1193–8.

    PubMed  Google Scholar 

  276. Bianchi MC, Sgandurra G, Tosetti M, Battini R, Cioni G. Brain magnetic resonance in the diagnostic evaluation of mitochondrial encephalopathies. Biosci Rep. 2007;27(1–3):69–85.

    Article  PubMed  CAS  Google Scholar 

  277. Bianchi MC, Tosetti M, Battini R, Manca ML, Mancuso M, Cioni G, et al. Proton MR spectroscopy of mitochondrial diseases: analysis of brain metabolic abnormalities and their possible diagnostic ­relevance. AJNR Am J Neuroradiol. 2003;24(10):1958–66.

    PubMed  Google Scholar 

  278. Lin DD, Crawford TO, Barker PB. Proton MR spectroscopy in the diagnostic evaluation of suspected mitochondrial disease. AJNR Am J Neuroradiol. 2003;24(1):33–41.

    PubMed  Google Scholar 

  279. Boddaert N, Romano S, Funalot B, Rio M, Sarzi E, Lebre AS, et al. 1H MRS spectroscopy evidence of cerebellar high lactate in mitochondrial respiratory chain deficiency. Mol Genet Metab. 2008;93(1):85–8.

    Article  PubMed  CAS  Google Scholar 

  280. Inao S, Marmarou A, Clarke GD, Andersen BJ, Fatouros PP, Young HF. Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury. J Neurosurg. 1988;69(5):736–44.

    Article  PubMed  CAS  Google Scholar 

  281. Dinopoulos A, Cecil KM, Schapiro MB, Papadimitriou A, Hadjigeorgiou GM, Wong B, et al. Brain MRI and proton MRS findings in infants and children with respiratory chain defects. Neuropediatrics. 2005;36(5):290–301.

    Article  PubMed  CAS  Google Scholar 

  282. Phelan JA, Lowe LH, Glasier CM. Pediatric neurodegenerative white matter processes: leukodystrophies and beyond. Pediatr Radiol. 2008;38(7):729–49.

    Article  PubMed  Google Scholar 

  283. Eichler FS, Barker PB, Cox C, Edwin D, Ulug AM, Moser HW, et al. Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy. Neurology. 2002;58(6):901–7.

    PubMed  CAS  Google Scholar 

  284. Oz G, Tkac I, Charnas LR, Choi IY, Bjoraker KJ, Shapiro EG, et al. Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients. Neurology. 2005;64(3):434–41.

    Article  PubMed  CAS  Google Scholar 

  285. Bizzi A, Castelli G, Bugiani M, Barker PB, Herskovits EH, Danesi U, et al. Classification of childhood white matter disorders using proton MR spectroscopic imaging. AJNR Am J Neuroradiol. 2008;29(7):1270–5.

    Article  PubMed  CAS  Google Scholar 

  286. Haussinger D, Schliess F. Astrocyte swelling and protein tyrosine nitration in hepatic encephalopathy. Neurochem Int. 2005;47(1–2):64–70.

    Article  PubMed  CAS  Google Scholar 

  287. Vaquero J, Butterworth RF. The brain glutamate system in liver failure. J Neurochem. 2006;98(3):661–9.

    Article  PubMed  CAS  Google Scholar 

  288. Kreis R, Ross BD, Farrow NA, Ackerman Z. Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-1 MR spectroscopy. Radiology. 1992;182(1):19–27.

    PubMed  CAS  Google Scholar 

  289. Ross BD, Danielsen ER, Bluml S. Proton magnetic resonance spectroscopy: the new gold standard for diagnosis of clinical and subclinical hepatic encephalopathy? Dig Dis. 1996;14 Suppl 1:30–9.

    Article  PubMed  Google Scholar 

  290. Taylor-Robinson SD, Buckley C, Changani KK, Hodgson HJ, Bell JD. Cerebral proton and phosphorus-31 magnetic resonance spectroscopy in patients with subclinical hepatic encephalopathy. Liver. 1999;19(5):389–98.

    Article  PubMed  CAS  Google Scholar 

  291. Binesh N, Huda A, Thomas MA, Wyckoff N, Bugbee M, Han S, et al. Hepatic encephalopathy: a neurochemical, neuroanatomical, and neuropsychological study. J Appl Clin Med Phys. 2006;7(1):86–96.

    Article  PubMed  Google Scholar 

  292. Hass HG, Nagele T, Seeger U, Hosl F, Gregor M, Kaiser S. Detection of subclinical and overt hepatic encephalopathy and treatment control after L-ornithine-L-aspartate medication by magnetic resonance spectroscopy ((1)H-MRS). Z Gastroenterol. 2005;43(4):373–8.

    Article  PubMed  CAS  Google Scholar 

  293. Naegele T, Grodd W, Viebahn R, Seeger U, Klose U, Seitz D, et al. MR imaging and (1)H spectroscopy of brain metabolites in hepatic encephalopathy: time-course of renormalization after liver transplantation. Radiology. 2000;216(3):683–91.

    PubMed  CAS  Google Scholar 

  294. Cha S. Neuroimaging in neuro-oncology. Neurotherapeutics. 2009;6(3):465–77.

    Article  PubMed  CAS  Google Scholar 

  295. Omuro AM, Leite CC, Mokhtari K, Delattre JY. Pitfalls in the diagnosis of brain tumours. Lancet Neurol. 2006;5(11):937–48.

    Article  PubMed  Google Scholar 

  296. Hollingworth W, Medina LS, Lenkinski RE, Shibata DK, Bernal B, Zurakowski D, et al. A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am J Neuroradiol. 2006;27(7):1404–11.

    PubMed  CAS  Google Scholar 

  297. Horská A, Barker PB. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am. 2010;20(3):293–310.

    Article  PubMed  Google Scholar 

  298. Moller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, et al. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology. 2002;44(5):371–81.

    Article  PubMed  CAS  Google Scholar 

  299. Howe FA, Opstad KS. 1H MR spectroscopy of brain tumours and masses. NMR Biomed. 2003;16(3):123–31.

    Article  PubMed  CAS  Google Scholar 

  300. Chawla S, Wang S, Wolf RL, Woo JH, Wang J, O’Rourke DM, et al. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. AJNR Am J Neuroradiol. 2007;28(9):1683–9.

    Article  PubMed  CAS  Google Scholar 

  301. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R, et al. Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology. 1989;172(2):541–8.

    PubMed  CAS  Google Scholar 

  302. Langkowski JH, Wieland J, Bomsdorf H, Leibfritz D, Westphal M, Offermann W, et al. Pre-operative localized in vivo proton spectroscopy in cerebral tumors at 4.0 Tesla–first results. Magn Reson Imaging. 1989;7(5):547–55.

    Article  PubMed  CAS  Google Scholar 

  303. Tamiya T, Kinoshita K, Ono Y, Matsumoto K, Furuta T, Ohmoto T. Proton magnetic resonance spectroscopy reflects cellular proliferative activity in astrocytomas. Neuroradiology. 2000;42(5):333–8.

    Article  PubMed  CAS  Google Scholar 

  304. Shimizu H, Kumabe T, Shirane R, Yoshimoto T. Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. AJNR Am J Neuroradiol. 2000;21(4):659–65.

    PubMed  CAS  Google Scholar 

  305. Tedeschi G, Lundbom N, Raman R, Bonavita S, Duyn JH, Alger JR, et al. Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg. 1997;87(4):516–24.

    Article  PubMed  CAS  Google Scholar 

  306. Hourani R, Brant LJ, Rizk T, Weingart JD, Barker PB, Horska A. Can proton MR spectroscopic and perfusion imaging differentiate between neoplastic and nonneoplastic brain lesions in adults? AJNR Am J Neuroradiol. 2008;29(2):366–72.

    Article  PubMed  CAS  Google Scholar 

  307. Alger JR, Frank JA, Bizzi A, Fulham MJ, DeSouza BX, Duhaney MO, et al. Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. Radiology. 1990;177(3):633–41.

    PubMed  CAS  Google Scholar 

  308. Barker PB, Glickson JD, Bryan RN. In vivo magnetic resonance spectroscopy of human brain tumors. Top Magn Reson Imaging. 1993;5(1):32–45.

    PubMed  CAS  Google Scholar 

  309. Herholz K, Heindel W, Luyten PR, den Hollander JA, Pietrzyk U, Voges J, et al. In vivo imaging of glucose consumption and lactate concentration in human gliomas. Ann Neurol. 1992;31(3):319–27.

    Article  PubMed  CAS  Google Scholar 

  310. Negendank W, Sauter R. Intratumoral lipids in 1H MRS in vivo in brain tumors: experience of the Siemens cooperative clinical trial. Anticancer Res. 1996;16(3B):1533–8.

    PubMed  CAS  Google Scholar 

  311. Howe FA, Barton SJ, Cudlip SA, Stubbs M, Saunders DE, Murphy M, et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med. 2003;49(2):223–32.

    Article  PubMed  CAS  Google Scholar 

  312. Kuesel AC, Sutherland GR, Halliday W, Smith IC. 1H MRS of high grade astrocytomas: mobile lipid accumulation in necrotic tissue. NMR Biomed. 1994;7(3):149–55.

    Article  PubMed  CAS  Google Scholar 

  313. Di Costanzo A, Scarabino T, Trojsi F, Popolizio T, Catapano D, Giannatempo GM, et al. d’Angelo VA, Salvolini U, Tedeschi G. Proton MR spectroscopy of cerebral gliomas at 3 T: spatial heterogeneity, and tumour grade and extent. Eur Radiol. 2008;18(8):1727–35.

    Article  PubMed  Google Scholar 

  314. Hattingen E, Raab P, Franz K, Lanfermann H, Setzer M, Gerlach R, et al. Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology. 2008;50(9):759–67.

    Article  PubMed  Google Scholar 

  315. Castillo M, Smith JK, Kwock L. Correlation of myo-inositol levels and grading of cerebral astrocytomas. AJNR Am J Neuroradiol. 2000;21(9):1645–9.

    PubMed  CAS  Google Scholar 

  316. Saraf-Lavi E, Bowen BC, Pattany PM, Sklar EM, Murdoch JB, Petito CK. Proton MR spectroscopy of gliomatosis cerebri: case report of elevated myoinositol with normal choline levels. AJNR Am J Neuroradiol. 2003;24(5):946–51.

    PubMed  Google Scholar 

  317. Majos C, Aguilera C, Cos M, Camins A, Candiota AP, Delgado-Goni T, et al. In vivo proton magnetic resonance spectroscopy of intraventricular tumours of the brain. Eur Radiol. 2009;19(8):2049–59.

    Article  PubMed  Google Scholar 

  318. Remy C, Grand S, Lai ES, Belle V, Hoffmann D, Berger F, et al. 1H MRS of human brain abscesses in vivo and in vitro. Magn Reson Med. 1995;34(4):508–14.

    Article  PubMed  CAS  Google Scholar 

  319. Garg M, Gupta RK. MR Spectroscopy in intracranial infection. In: Gillard JH, Waldman AD, Barker PB, editors. Clinical MR Neuroimaging: Diffusion, Perfusion and Spectroscopy. Cambridge, UK: Cambridge University Press; 2004. p. 380–406.

    Chapter  Google Scholar 

  320. Saindane AM, Cha S, Law M, Xue X, Knopp EA, Zagzag D. Proton MR spectroscopy of tumefactive demyelinating lesions. AJNR Am J Neuroradiol. 2002;23(8):1378–86.

    PubMed  Google Scholar 

  321. Al-Okaili RN, Krejza J, Wang S, Woo JH, Melhem ER. Advanced MR imaging techniques in the diagnosis of intraaxial brain tumors in adults. Radiographics. 2006;26 Suppl 1:S173–89.

    Article  PubMed  Google Scholar 

  322. Butzen J, Prost R, Chetty V, Donahue K, Neppl R, Bowen W, et al. Discrimination between neoplastic and nonneoplastic brain lesions by use of proton MR spectroscopy: the limits of accuracy with a logistic regression model. AJNR Am J Neuroradiol. 2000;21(7):1213–9.

    PubMed  CAS  Google Scholar 

  323. Rand SD, Prost R, Haughton V, Mark L, Strainer J, Johansen J, et al. Accuracy of single-voxel proton MR spectroscopy in distinguishing neoplastic from nonneoplastic brain lesions. AJNR Am J Neuroradiol. 1997;18(9):1695–704.

    PubMed  CAS  Google Scholar 

  324. De Stefano N, Caramanos Z, Preul MC, Francis G, Antel JP, Arnold DL. In vivo differentiation of astrocytic brain tumors and isolated demyelinating lesions of the type seen in multiple sclerosis using 1H magnetic resonance spectroscopic imaging. Ann Neurol. 1998;44(2):273–8.

    Article  PubMed  Google Scholar 

  325. Venkatesh SK, Gupta RK, Pal L, Husain N, Husain M. Spectroscopic increase in choline signal is a nonspecific marker for differentiation of infective/inflammatory from neoplastic lesions of the brain. J Magn Reson Imaging. 2001;14(1):8–15.

    Article  PubMed  CAS  Google Scholar 

  326. Wilkinson ID, Griffiths PD, Wales JK. Proton magnetic resonance spectroscopy of brain lesions in children with neurofibromatosis type 1. Magn Reson Imaging. 2001;19(8):1081–9.

    Article  PubMed  CAS  Google Scholar 

  327. Vuori K, Kankaanranta L, Hakkinen AM, Gaily E, Valanne L, Granstrom ML, et al. Low-grade gliomas and focal cortical developmental malformations: differentiation with proton MR spectroscopy. Radiology. 2004;230(3):703–8.

    Article  PubMed  Google Scholar 

  328. Majos C, Aguilera C, Alonso J, Julia-Sape M, Castaner S, Sanchez JJ, et al. Proton MR spectroscopy improves discrimination between tumor and pseudotumoral lesion in solid brain masses. AJNR Am J Neuroradiol. 2009;30(3):544–51.

    Article  PubMed  CAS  Google Scholar 

  329. Hourani R, Horska A, Albayram S, Brant LJ, Melhem E, Cohen KJ, et al. Proton magnetic resonance spectroscopic imaging to differentiate between nonneoplastic lesions and brain tumors in children. J Magn Reson Imaging. 2006;23(2):99–107.

    Article  PubMed  Google Scholar 

  330. Arnold DL, Shoubridge EA, Villemure JG, Feindel W. Proton and phosphorus magnetic resonance spectroscopy of human astrocytomas in vivo. Preliminary observations on tumor grading. NMR Biomed. 1990;3(4):184–9.

    Article  PubMed  CAS  Google Scholar 

  331. Gill SS, Thomas DG, Van BN, Gadian DG, Peden CJ, Bell JD, et al. Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. J Comput Assist Tomogr. 1990;14(4):497–504.

    Article  PubMed  CAS  Google Scholar 

  332. Meyerand ME, Pipas JM, Mamourian A, Tosteson TD, Dunn JF. Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy. AJNR Am J Neuroradiol. 1999;20(1):117–23.

    PubMed  CAS  Google Scholar 

  333. Preul MC, Leblanc R, Caramanos Z, Kasrai R, Narayanan S, Arnold DL. Magnetic resonance spectroscopy guided brain tumor resection: differentiation between recurrent glioma and radiation change in two diagnostically difficult cases. Can J Neurol Sci. 1998;25(1):13–22.

    PubMed  CAS  Google Scholar 

  334. Stadlbauer A, Gruber S, Nimsky C, Fahlbusch R, Hammen T, Buslei R, et al. Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology. 2006;238(3):958–69.

    Article  PubMed  Google Scholar 

  335. Pfisterer WK, Nieman RA, Scheck AC, Coons SW, Spetzler RF, Preul MC. Using ex vivo proton magnetic resonance spectroscopy to reveal associations between biochemical and biological features of meningiomas. Neurosurg Focus. 2010;28(1):E12.

    Article  PubMed  Google Scholar 

  336. Majos C, Alonso J, Aguilera C, Serrallonga M, Coll S, Acebes JJ, et al. Utility of proton MR spectroscopy in the diagnosis of radiologically atypical intracranial meningiomas. Neuroradiology. 2003;45(3):129–36.

    PubMed  CAS  Google Scholar 

  337. Castillo M, Kwock L. Proton MR spectroscopy of common brain tumors. Neuroimaging Clin N Am. 1998;8(4):733–52.

    PubMed  CAS  Google Scholar 

  338. Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology. 2002;222(3):715–21.

    Article  PubMed  Google Scholar 

  339. Fan G, Sun B, Wu Z, Guo Q, Guo Y. In vivo single-voxel proton MR spectroscopy in the differentiation of high-grade gliomas and solitary metastases. Clin Radiol. 2004;59(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  340. Chiang IC, Kuo YT, Lu CY, Yeung KW, Lin WC, Sheu FO, et al. Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings. Neuroradiology. 2004;46(8):619–27.

    Article  PubMed  Google Scholar 

  341. Yang I, Aghi MK. New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol. 2009;6(11):648–57.

    Article  PubMed  Google Scholar 

  342. Taylor JS, Langston JW, Reddick WE, Kingsley PB, Ogg RJ, Pui MH, et al. Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys. 1996;36(5):1251–61.

    Article  PubMed  CAS  Google Scholar 

  343. Wald LL, Nelson SJ, Day MR, Noworolski SE, Henry RG, Huhn SL, et al. Serial proton magnetic resonance spectroscopy imaging of glioblastoma multiforme after brachytherapy. J Neurosurg. 1997;87(4):525–34.

    Article  PubMed  CAS  Google Scholar 

  344. Chernov MF, Hayashi M, Izawa M, Usukura M, Yoshida S, Ono Y, et al. Multivoxel proton MRS for differentiation of radiation-­induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases. Brain Tumor Pathol. 2006;23(1):19–27.

    Article  PubMed  CAS  Google Scholar 

  345. Rock JP, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher JL, et al. Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery. 2002;51(4):912–9. discussion 919–920.

    PubMed  Google Scholar 

  346. Li X, Vigneron DB, Cha S, Graves EE, Crawford F, Chang SM, et al. Relationship of MR-derived lactate, mobile lipids, and relative blood volume for gliomas in vivo. AJNR Am J Neuroradiol. 2005;26(4):760–9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena Horská PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Horská, A., Tkáč, I. (2011). Magnetic Resonance Spectroscopy: Clinical Applications. In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics