Skip to main content

Use of Cyanobacterial Proteins to Engineer New Crops

  • Chapter
  • First Online:
Recent Advances in Plant Biotechnology

Abstract

Cyanobacteria, the closest living relatives of the ancient endosymbiont that gave rise to modern-day chloroplasts, offer a rich source of genes for plant genetic engineering, due to both similarities with and differences from the plant genetic systems. On the one hand, cyanobacteria share many metabolic pathways with plant cells, and especially with chloroplasts, which may be critical when the transgenic product needs to interact with endogenous systems or substrates to exert its function. On the other hand, most mechanisms involved in plant regulation of gene expression have arisen after endosymbiosis, permitting a more rational manipulation of the introduced trait, free from host regulatory networks. In addition, sequence divergence between plant genes and their cyanobacterial orthologues prevents, in most cases, the unwanted consequences of gene silencing and cosuppression. Finally, a few cyanobacterial genes involved in tolerance to environmental and/or nutritional stresses have disappeared from the plant genome during the evolutionary pathway from cyanobacteria to vascular plants, raising the possibility of recovering these adaptive advantages by introducing those lost genes into transgenic plants. In spite of their obvious potential, the use of cyanobacterial genes to engineer plants for increased productivity or stress tolerance has been relatively rare. In this chapter, we review several examples in which this approach has been applied to plant genetic engineering with considerable success. They include modification of central metabolic pathways to improve carbon assimilation and allocation by expressing unregulated cyanobacterial enzymes, development of chilling tolerance by increasing desaturation of membrane-bound fatty acids, pigment manipulation, shifts in light quality perception, production of biodegradable polymers, and synthesis of ketocarotenoids not present in crops. Tolerance to adverse environments could be achieved by the introduction of cyanobacterial genes lost from the plant genome during evolution, such as flavodoxin. The results obtained illustrate the power of gene and data mining in cyanobacterial genomes as a biotechnological tool for the design of transgenic plants with higher productivity, enhanced tolerance to environmental stress, and potential for biofarming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Boyer, J.S. 1982. Plant productivity and environment. Science 218: 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, R.R. 1976. Regulatory function of Δ6 desaturase: key enzyme of polyunsaturated fatty acid synthesis. Adv. Exp. Med. Biol. 83: 85–101.

    Google Scholar 

  • Casal, J.J., Luccioni, L.G., Oliverio, K.A. and Boccalandro, H.E. 2003. Light, phytochrome signalling and photomorphogenesis in Arabidopsis. Photochem. Photobiol. Sci. 2: 625–636.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L.M., Omiya, O., Hata, S. and Izui, K. 2002. Molecular characterization of a phosphoenolpyruvate carboxylase from a thermophilic cyanobacterium, Synechococcus vulcanus with unusual allosteric properties. Plant. Cell Physiol. 43: 159–169.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L.M., Li, K.Z., Miwa, T. and Izui, K. 2004. Overexpression of a cyanobacterial phosphoenolpyruvate carboxylase with diminished sensitivity to feedback inhibition in Arabidopsis changes amino acid metabolism. Planta 219: 440–449.

    PubMed  CAS  Google Scholar 

  • Chen, Y.M., Ferrar, T.S., Lohmeir-Vogel, E., Morrice, N., Mizuno, Y., Berenger, B., Ng, K.K.S., Muench, D.G. and Moorhead, G.B.G. 2006. The PII signal transduction protein of Arabidopsis thaliana forms and arginine-regulated complex with plastid N -acetyl glutamate kinase. J. Biol. Chem. 281: 5726–5733.

    Article  PubMed  CAS  Google Scholar 

  • Chida, H., Nakazawa, A., Akazaki, H., Hirano, T., Suruga, K., Ogawa, M., Satoh, T., Kadokura, K., Yamada, S., Hakamata, W., Isobe, K., Ito, T., Ishii, R., Nishio, T., Sonoike, K. and Oku, T. 2007. Expression of the algal cytochrome c 6 gene in Arabidopsis enhances photosynthesis and growth. Plant Cell Physiol. 48: 948–957.

    Article  PubMed  CAS  Google Scholar 

  • Chin, H.G., Kim, G.D., Marin, I., Mersha, F., Evans, T.C., Chen, L., Xu, M.Q. and Pradhan, S. 2003. Protein trans-splicing in transgenic plant chloroplast: reconstruction of herbicide resistance from split genes. Proc. Natl. Acad. Sci. USA, 100: 4510–4515.

    Article  PubMed  CAS  Google Scholar 

  • Chollet, R. 1996. Phosphenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 273–298.

    Article  PubMed  CAS  Google Scholar 

  • Curatti, L., Folco, E., Desplats, P., Abratti, G., Limones, V., Herrera-Estrella, L. and Salerno, G. 1998. Sucrose-phosphate synthase from Synechocystis sp. strain PCC 6803: identification of the spsA gene and characterization of the enzyme expressed in Escherichia coli. J. Bacteriol. 180: 6776–6779.

    PubMed  CAS  Google Scholar 

  • Cushman, J.C. and Bohnert, H.J. 2000. Genomic approaches to plant stress tolerance. Curr. Opin. Plant Biol. 3: 117–124.

    Article  PubMed  CAS  Google Scholar 

  • De la Rosa, M.A., Navarro, J.A., Díaz-Quintana, A., de la Cerda, B., Molina-Heredia, F.P., Balme, A., Murdoch, P.S., Díaz-Moreno, I., Durán, R.V. and Hervás, M. 2002. An evolutionary analysis of the reaction mechanisms of photosystem I reduction by cytochrome c (6) and plastocyanin. Bioelectrochem. 55: 41–45.

    Article  Google Scholar 

  • Erdner, D.L., Price, N.M., Doucette, D.G., Peleato, M.L. and Anderson, D.M. 1999. Characterization of ferredoxin and flavodoxin as markers of iron limitation in marine phytoplankton. Mar. Ecol. Prog. Ser. 184: 43–53.

    Article  CAS  Google Scholar 

  • Fischer, R., Stoger, E., Schillberg, S., Christou, P. and Twyman, R.M. 2004. Plant based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7: 152–158.

    Article  PubMed  CAS  Google Scholar 

  • Frankenberg, N., Mukougawa, K., Kohchi, T. and Lagarias, J.C. 2001. Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13: 965–978.

    Article  PubMed  CAS  Google Scholar 

  • Fromme, P., Jordan, P. and Krauss, N. 2001. Structure of photosystem I. Biochim. Biophys. Acta 1507: 5–31.

    Article  PubMed  CAS  Google Scholar 

  • Frommer, W.B. and Sonnewald, U. 1995. Molecular analysis of carbon partitioning in solanaceous species. J. Exp. Bot. 287: 587–607.

    Article  Google Scholar 

  • Fukuchi-Mizutani, M., Tasaka, Y., Tanaka, Y., Ashikari, T., Kusumi, T. and Murata, N. 1998. Characterization of Δ9 acyl-lipid desaturase homologues from Arabidopsis thaliana. Plant Cell Physiol. 39: 247–253.

    PubMed  CAS  Google Scholar 

  • Galtier, N., Foyer, C.H., Huber, J.L.A., Voelker, T.A. and Huber, S.C. 1993. Effects of elevated sucrose phosphate synthase activity on photosynthesis, assimilate partitioning and growth in tomato. Plant Phys. 101: 535–443.

    CAS  Google Scholar 

  • Geigenberger, P., Stitt, M. and Fernie, A.R. 2004. Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant Cell Environ. 27: 655–673.

    Article  CAS  Google Scholar 

  • Gerjets, T. and Sandmann, G. 2006. Ketocarotenoid formation in transgenic potato. J. Exp. Bot. 57: 3639–3645.

    Article  PubMed  CAS  Google Scholar 

  • Gomord, V., Chamberlain, P., Jefferis, R. and Faye, L. 2005. Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol. 23: 559–565.

    Article  PubMed  CAS  Google Scholar 

  • Guerin, M., Huntley, M.E. and Olaizola, M. 2003. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21: 210–216.

    Article  PubMed  CAS  Google Scholar 

  • Guerinot, M.L. 2007. It’s elementary: enhancing Fe3+ reduction improves rice yields. Proc. Natl. Acad. Sci. USA 104: 7311–7312.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, E.P., Willingham, N.M., Lloyd, J.C. and Raines, C.A. 1998. Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 204: 27–36.

    Article  CAS  Google Scholar 

  • Harrison, E.P., Olcer, H., Lloyd, J.C., Long, S.P. and Raines, C.A. 2001. Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity. J. Exp. Bot. 52: 1779–1784.

    Article  PubMed  CAS  Google Scholar 

  • Hase, T., Schürmann, P. and Knaff, D.B. 2006. The interaction of ferredoxin with ferredoxin-dependent enzymes. In Photosystem I: The light-driven plastocyanin-ferredoxin oxidoreductase (Golbeck, J.H., ed.), pp. 477–498, Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Hellwig, S., Drossard, J., Twyman, R.M. and Fischer, R. 2004. Plant cell cultures for the production of recombinant proteins. Nat Biotechnol. 22: 1415–1422.

    Article  PubMed  CAS  Google Scholar 

  • Higuera-Ciapara, I., Félix-Valenzuela, L. and Goycoolea, F.M. 2006. Astaxanthin: a review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 46: 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Hirashima, M., Satoh, S., Tanaka, R. and Tanaka, A. 2006. Pigment shuffling in antenna systems achieved by expressing prokaryotic chlorophyllide a oxygenase in Arabidopsis. J. Biol. Chem. 281: 15385–15393.

    Article  PubMed  CAS  Google Scholar 

  • Huber, S.C. and Huber, J.L. 1992. Role of sucrose-phosphate synthase in sucrose metabolism in leaves. Plant Physiol. 99: 1275–1278.

    Article  PubMed  CAS  Google Scholar 

  • Hühns, M., Neumann, K., Hausmann, T., Ziegler, K., Klemke, F., Kahmann, U., Staiger, D., Lockau, W., Pistorius, E.K. and Broer, I. 2008. Plastid targeting strategies for cyanophycin synthetase to achieve high-level polymer accumulation in Nicotiana tabacum. Plant Biotechnol. J. 6: 321–336.

    Article  PubMed  Google Scholar 

  • Ishizaki-Nishizawa, O., Fujii, T., Azuma, M., Sekiguchi, K., Murata, N., Ohtani, T. and Toguri, T. 1996. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat. Biotechnol. 14: 1003–1006.

    Article  PubMed  CAS  Google Scholar 

  • Jube, S. and Borthakur, D. 2007. Expression of bacterial genes in transgenic tobacco: methods, applications and future prospects. Electronic J. Biotechnol. 10: 452–467.

    CAS  Google Scholar 

  • Kami, C., Mukougawa, K., Muramoto, T., Yokota, A., Shinomura, T., Lagarias, J.C. and Kohchi, T. 2004. Complementation of phytochrome chromophore-deficient Arabidopsis by expression of phycocyanobilin: ferredoxin oxidoreductase. Proc. Natl. Acad. Sci. USA 101:1099–1104.

    Article  PubMed  CAS  Google Scholar 

  • Khan, M.S., Khalid, A.M. and Malik, K.A. (2005). Intein-mediated protein trans-splicing and transgene containment in plastids. Trends Biotechnol. 23: 217–220.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.A. and Guerinot, M.L. 2007. Mining iron: iron uptake and transport in plants. FEBS Lett. 581: 2273–2280.

    Article  PubMed  CAS  Google Scholar 

  • Krause, K.P. 1994. Zur Regulation von Saccharosephosphatsynthase. PhD Thesis, Universität Bayreuth, Germany.

    Google Scholar 

  • Krause, K.P., Hill, L., Reimhotz, R., Hamborg-Nielsen, T., Sonnewald, U. and Stitt, M. 1998. Sucrose metabolism in cold-stored potato tubers with decreased expression of sucrose phosphate synthase. Plant Cell Environ. 21: 285–299.

    Article  CAS  Google Scholar 

  • Krehenbrink, M., Oppermann-Sanio, F.B. and Steinbüchel, A. 2002. Evaluation of non-cyanobacterial genome sequences for occurrence of genes encoding proteins homologous to cyanophycin synthetase and cloning of an active cyanophycin synthetase from Acinetobacter sp. strain DSM 587. Arch. Microbiol. 177: 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Kossmann, J., Sonnewald, U. and Willmitzer, L. 1994. Reduction of the chloroplast fructose-1,6-bisphosphatase in transgenic potato plants impairs photosynthesis and plant growth. Plant J. 6: 637–650.

    Article  CAS  Google Scholar 

  • Lieman-Hurwitz, J., Rachmilevitch, S., Mittler, R., Marcus, Y. and Kaplan, A. 2003. Enhanced photosynthesis and growth of transgenic plants that express ictB , a gene involved in HCO3 accumulation in cyanobacteria. Plant Biotechnol. J. 1: 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Long, S.P., Zhu, X.G., Naidu, S.L. and Ort, D.R. 2006. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 29: 315–330.

    Article  PubMed  CAS  Google Scholar 

  • Lunn, J.E., Price, G.D. and Furbank, R.T. 1999. Cloning and expression of a prokaryotic sucrose-phosphate synthase gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol. 40: 297–305.

    Google Scholar 

  • Lunn, J.E., Gillespie, V.J. and Furbank, R.T. 2003. Expression of a cyanobacterial sucrose-phosphate synthase from Synechocystis sp. PCC 6803 in transgenic plants. J. Exp. Bot. 381: 223–237.

    Article  Google Scholar 

  • Miyagawa, Y., Tamoi, M. and Shigeoka, S. 2001. Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat. Biotechnol. 19: 965–969.

    Article  PubMed  CAS  Google Scholar 

  • Morandini, P. and Salamini, F. 2003. Plant biotechnology and breeding: allied for years to come. Trends Plant Sci. 8: 70–75.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, K., Stephan, D.P., Ziegler, K., Hühns, M., Broer, I., Lockau, W. and Pistorius, E.K. 2005. Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnol. J. 3: 249–258.

    Article  PubMed  CAS  Google Scholar 

  • Oppermann-Sanio, F.B. and Steinbüchel, A. 2002. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften 89:11–22.

    Article  PubMed  CAS  Google Scholar 

  • Orlova, I.V., Serebriiskaya, T.S., Popov, V., Merkulova, N., Nosov, A.M., Trunova, T.I., Tsydendambaev, V.D. and Los, D.A. 2003. Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol. 44:447–450.

    Article  PubMed  CAS  Google Scholar 

  • Palenik, B., Ren, Q., Dupont, C.L., Myers, G.S., Heidelberg, J.F., Badger, J.H., Madupu, R., Nelson, W.C., Brinkac, L.M., Dodson, R.J., Durkin, A.S., Daugherty, S.C., Sullivan, S.A., Khouri, H., Mohamoud, Y., Halpin, R. and Paulsen, I.T. 2006. Genome sequence of Synechococcus CC9311: insights into adaptation to a coastal environment. Proc. Natl. Acad. Sci. USA 103: 13555–13559.

    Article  PubMed  CAS  Google Scholar 

  • Perler, F.B. 1998. Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell 92: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Quick, W.P. and Neuhaus, H.E. 1997. A molecular approach to primary metabolism in higher plants. In The regulation and control of photosynthetic carbon assimilation (Foyer, C.H. and Quick, W.P., eds.), pp. 41–62, Taylor and Francis Ltd, London.

    Google Scholar 

  • Reddy, A.S., Nuccio, M.L., Gross, L.M. and Thomas, T.L. 1993. Isolation of a Δ6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp. strain PCC 7120. Plant Mol. Biol. 22: 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, A.S. and Thomas, T.L. 1996. Expression of a cyanobacterial Δ6-desaturase gene results in γ-linolenic acid production in transgenic plants. Nat. Biotechnol. 14: 639–642.

    Article  PubMed  CAS  Google Scholar 

  • Rolletschek, H., Borisjuk, L., Radchuk, R., Miranda, M., Heim, U., Wobus, U. and Weber, H. 2004. Seed-specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotechnol. J. 2: 211–219.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, J.Y., Jeong, S.W., Lim, A.Y., Ko, Y., Yoon, S., Choi, A.B. and Park, Y.I. 2008. Cyanobacterial glucokinase complements the glucose sensing role of Arabidopsis thaliana hexokinase 1. Biochem. Biophys. Res. Commun. 374: 454–459.

    Article  PubMed  CAS  Google Scholar 

  • Sandmann, G. 2001. Carotenoid biosynthesis and biotechnological application. Arch. Biochem. Biophys. 385: 4–12.

    Article  PubMed  CAS  Google Scholar 

  • Sharkey, T.D. 1985. Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot. Rev. 51: 53–105.

    Article  Google Scholar 

  • Singh, A.K., Li, H. and Sherman, L.A. 2004. Microarray analysis and redox control of gene expression in the cyanobacterium Synechocystis sp. PCC 6803. Physiol. Plant. 120: 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Tamoi, M., Nagaoka, M., Miyagawa, Y. and Shigeoka, S. 2006. Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol. 47: 380–390.

    Article  PubMed  CAS  Google Scholar 

  • Thimm, O., Essigmann, B., Kloska, S., Altmann, T. and Buckhout, T.J. 2001. Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol. 127:1030–1043.

    Article  PubMed  CAS  Google Scholar 

  • Tognetti, V.B., Palatnik, J.F., Fillat, M.F., Melzer, M., Hajirezaei, M.-R., Valle, E.M. and Carrillo, N. 2006. Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. Plant Cell 18: 2035–2050.

    Article  PubMed  CAS  Google Scholar 

  • Tognetti, V.B., Zurbriggen, M.D., Morandi, E.N., Fillat, M.F., Valle, E.M., Hajirezaei, M.-R. and Carrillo, N. 2007. Enhanced plant tolerance to iron starvation by functional substitution of chloroplast ferredoxin with a bacterial flavodoxin. Proc. Natl. Acad. Sci. USA 104: 11495–11500.

    Article  PubMed  CAS  Google Scholar 

  • Tognetti, V., Zurbriggen, M., Valle, E., Carrillo, N., Morandi, E., Melzer, M., Hajirezaei, M.-R. and Fillat, M. 2008. Recovering the cyanobacterial heritage in land plants: the case of flavodoxin. In Flavins and flavoproteins (Frago, S., Gómez-Moreno, C. and Medina, M., eds.), Vol. 16, pp. 527–536, Prensas Universitarias de Zaragoza.

    Google Scholar 

  • Twyman, R.M., Stoger, E., Schillberg, S., Christou, P. and Fischer, R. 2003. Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 21: 570–578.

    Article  PubMed  CAS  Google Scholar 

  • Vij, S. and Tyagi, A.K. 2007. Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant. Biotechnol. J. 5: 361–380.

    Article  PubMed  CAS  Google Scholar 

  • Vinocur, B. and Altman, A. 2005. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr. Opin. Biotechnol. 16: 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Fox, G.C. and Henry-Smith, T.V. 2003. Intein-mediated assembly of a functional β-glucuronidase in transgenic plants. Proc. Natl. Acad. Sci. USA 100: 3513–3518.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, C., Gerjets, T. and Sandmann, G. 2007. Nicotiana glauca engineered for the production of ketocarotenoids in flowers and leaves by expressing the cyanobacterial crtO ketolase gene. Transgenic Res. 16: 813–821.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler, K., Deutzmann, R. and Lockau, W. 2002. Cyanophycin synthetase-like enzymes of non-cyanobacterial eubacteria: characterization of the polymer produced by a recombinant synthetase of Desulfitobacterium hafniense. Z. Naturforschung Teil C 57: 522–529.

    Google Scholar 

  • Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. 2004. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136: 2621–2632.

    Article  PubMed  CAS  Google Scholar 

  • Zurbriggen, M.D., Tognetti, V.B. and Carrillo, N. 2007. Stress-inducible flavodoxin from photosynthetic microorganisms. The mystery of flavodoxin loss from the plant genome. IUBMB Life 59: 355–360.

    Article  PubMed  CAS  Google Scholar 

  • Zurbriggen, M.D., Tognetti, V.B., Fillat, M., Hajirezaei, M.R., Valle, E. and Carrillo, N. 2008. Combating stress with flavodoxin: a promising route for crop improvement. Trends Biotechnol. 26: 531–537.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matias D. Zurbriggen .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zurbriggen, M.D., Néstor Carrillo, Hajirezaei, MR. (2009). Use of Cyanobacterial Proteins to Engineer New Crops. In: Recent Advances in Plant Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0194-1_4

Download citation

Publish with us

Policies and ethics