Skip to main content

Abstract

It is the cost and abundant availability of raw materials that determine the economic feasibility of biofuel production. Considering these constrains, agro-industrial residues may offer cheaper options as raw materials for biofuel production. This chapter thus aims at presenting the current status and future directions of biofuel production using both conventional substrates and agro-industrial residues as raw materials and critically analyzing the prospect of agro-industrial residue based production of biofuels. Utmost care has been taken to address all the critical economic and environmental issues related to the production of each of the gaseous and liquid biofuels namely biomethane, biohydrogen, bioethanol and biodiesel in the light of available published literature information. While the important process parameters involved in anaerobic digestion and co-digestion of agro-industrial residues in various judicious combinations have been discussed for biomethane production, roles of different reactor configurations, designs and various types of cultivation processes including photo and dark fermentation employing agro-industrial waste as substrates for biohydrogen production have been analyzed. Similarly, a comparative study of bioethanol production using lignocellulosic and non-lignocellulosic wastes has been presented and discussed. Though the oil cake as an agro-industrial waste holds some promise, biodiesel production using agro-industrial residues has not been reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahring BK, Sandberg M, and Angelidaki I (1995) Volatile acids as indicators of process imbalance in anaerobic digesters. Appl Microbiol Biotechnol 43: 559–565.

    Article  CAS  Google Scholar 

  • Amigun B, Sigamoney R, and von Blottnitz H (2008) Commercialisation of biofuel industry in Africa: A review. Renewable Sustainable Energy Rev 12: 690–711.

    Article  Google Scholar 

  • Anderson GK and Yang G (1992) Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration. Water Environ Res 64: 53–59.

    CAS  Google Scholar 

  • Antonopoulou G, Gavala HN, Skiadas IV et al. (2008) Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99: 110–119.

    Article  PubMed  CAS  Google Scholar 

  • Asli I, Jennifer N H, Anthony L et al. (2008) Aqueous ammonia soaking of switchgrass followed by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 144: 69–77

    Article  Google Scholar 

  • Azbar N, Keskin T, and Yuruyen A (2008) Enhancement of biogas production from olive mill effluent (OME) by co-digestion. Biomass Bioenergy doi:10.1016/j.biombioe.2008.03.002.

    Google Scholar 

  • Beccari M, Majone M, and Riccardi C (1998) Two reactor system with partial phase separation for anaerobic treatment of olive mill effluents. Water Sci Technol 38: 53–60.

    Article  CAS  Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ et al. (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with K. marxianus CECT 10875. Proc Biochem 39:1843–1848.

    Article  CAS  Google Scholar 

  • Camilli M and Pedroni PM (2005) Comparison of the performance of three different reactors for Biohydrogen production via dark anaerobic fermentations. Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005 Istanbul, Turke.

    Google Scholar 

  • Christen P, Bramorski A, Revah S et al. (2000) Characterization of volatile compounds produced by Rhizopus strains grown on agro-industrial solid wastes. Bioresour Technol 71: 211–215

    Article  CAS  Google Scholar 

  • Chongkhon S, Tongurai C, Chetpattananondh P et al. (2007) Biodiesel production by esterification of palm fatty acid distillate. Biomass Bioenergy 31: 563–568.

    Article  Google Scholar 

  • Claassen PAM, Budde MAW, van Noorden GE et al. (2004) Biological Hydrogen Production from Agro-Food By-Products. http://www.totalfood2004.com/TotalFood.pdf.

  • de Vrije T and Claassen PAM (2003) Dark hydrogen fermentations. In: J.H. Reith, R.H. Wijffels, H. Barten (eds) Bio-Methane and Bio-Hydrogen. Dutch Biological Hydrogen Foundation. Smiet Offset, The Hague, ISBN 90-9017165-7: 103–123.

    Google Scholar 

  • Fakas S, Certik M, Papanikolaou S et al. (2008) γ-Linolenic acid production by Cunninghamella echinulata growing on complex organic nitrogen sources. Bioresour Technol 99: 5986–5990

    Article  PubMed  CAS  Google Scholar 

  • Faulds CB, Bartolome B, Williamson G et al. (1997) Novel biotransformation of agro-industrial cereal waste by ferulic acid esterase. Ind Crops Prod 6: 367–374

    Article  CAS  Google Scholar 

  • Fernández D, Rodríguez E, Bassas M et al. (2005) Agro-industrial oily wastes as substrates for PHA production by the new strain P. aeruginosa NCIB 40045: effect of culture conditions. Biochem Eng J 26: 159–67

    Article  Google Scholar 

  • Fountoulakis MS, Drakopoulou S, Terzakis S et al. (2008) Potential for methane production from typical Mediterranean agro-industrial by-products. Biomass Bioenergy 32: 155–161

    Article  CAS  Google Scholar 

  • Fukuda H, Kondo A, and Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bio Eng 92: 405–416

    CAS  Google Scholar 

  • Ganan P, Zuluaga R, Restrepo A et al. (2008) Plantain fibre bundles isolated from Colombian agro-industrial residues. Bioresour Technol 99: 486–491

    Article  PubMed  CAS  Google Scholar 

  • Habibi Y, Zawawy WKE, Ibrahim MM et al. (2008) Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Compos Sci Technol 68: 1877–1885

    Article  CAS  Google Scholar 

  • Hamelinck CN, van HG, and Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass Bioenergy 28: 384–410.

    Article  CAS  Google Scholar 

  • Hamza A (1989) Utilization of Agro-industriai Residues in Alexandria: Experience and Prospects. Biol Wastes 29: 107–121

    Article  CAS  Google Scholar 

  • Hill DT, Cobb SA, and Bolte JP (1987) Using volatile fatty acid relationships to predict anaerobic digester failure. Trans ASAE 30: 496–501.

    CAS  Google Scholar 

  • Israilides C, Scanlon B, Smith A et al. (1994) Characterization of pullulans produced from agro-industrial wastes. Carbohydr Polym 25: 203–209

    Article  CAS  Google Scholar 

  • Jauhri KS (1989) Evaluation of certain agro-industrial wastes as seed pelletants under adverse soil pH conditions. Biol Wastes 28: 233–236

    Article  Google Scholar 

  • Kang H and Wetland P (1993) Ultimate anaerobic biodegradability of some Agro-industrial residues. Bioresour Technol 43: 107–111

    Article  CAS  Google Scholar 

  • Kashyap DR, Dadhich KS, and Sharma SK (2003) Biomethanation under psychrophilic conditions: a review. Bioresour Technol 87: 147–153

    Article  PubMed  CAS  Google Scholar 

  • Khardenavis AA, Kumar MS, Mudliar SN et al. (2007) Biotechnological conversion of agro-industrial wastewaters into biodegradable plastic, poly b-hydroxybutyrate. Bioresour Technol 98: 3579–3584

    Article  PubMed  CAS  Google Scholar 

  • Kim S and Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26: 361–375

    Article  Google Scholar 

  • Kivaisi AK and Rubindamayugi MST (1996) The potential of agro-industrial residues for production Of biogas and electr. ictty in Tanzania. WREC.

    Google Scholar 

  • Kivaisi AK and Mtila M (1998) Production of biogas from water hyacinth (Eichhornia crassipes) (Mart) (Solms) in a two stage bioreactor. World J Microbiol Technol 14: 125–131.

    Article  CAS  Google Scholar 

  • Krich K, Augenstein D, Batmale J P et al. (2005) Biomethane from Dairy Waste: A Sourcebook for the Production and Use of Renewable Natural Gas in California.

    Google Scholar 

  • Liimatainen H, Kuokkanen T, Kääriäinen J et al. (2004) Development of bio-ethanol production from waste potatoes. Proceedings of the Waste Minimization and Resources Use Optimization Conference, June 10, 2004, University of Oulu, Finland. Oulu University Press, Oulu,pp. 123–129

    Google Scholar 

  • Lin Y and Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69: 627–642.

    Article  PubMed  CAS  Google Scholar 

  • Mshandete A, Kivaisi A, Rubindamayugi M et al. (2004) Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresour Technol 95: 19–24

    Article  PubMed  CAS  Google Scholar 

  • Nath K, Chittibabu G, Das D (2005) Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of enterobacter cloacae strain DM11. Appl Microbiol Biotechnol 68: 533–541.

    Article  PubMed  CAS  Google Scholar 

  • Neves L, Ribeiro R, Oliveira R et al. (2006) Enhancement of methane production from barley waste. Biomass Bioenergy 30: 599–603

    Article  CAS  Google Scholar 

  • Nyns EJ (1986) Biomethanation processes. In: Schonborn, W. (ed), Microbial Degradations. Wiley-VCH Weinheim, Berlin 207–267.

    Google Scholar 

  • Pandey A, Soccol C R, Nigam P et al. (2000a) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74: 69–80

    Article  CAS  Google Scholar 

  • Pandey A, Soccol C R, Nigam P et al. (2000b) Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresour Technol 74: 81–87

    Article  CAS  Google Scholar 

  • Parawira W (2004) Doctoral Dissertation, Biotechnology Department, Lund University, Sweden

    Google Scholar 

  • Patle S and Lal B (2008) Investigation of the potential of agro-industrial material as low cost substrate for ethanol production by using Candida tropicalis and zymomonas mobilis. Biomass Bioenergy 32: 596–602

    Article  CAS  Google Scholar 

  • Peng XW and Chen HZ (2007) Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam-exploded wheat straw mixed with wheat bran. Bioresour Technol doi:10.1016/ j.biortech.2007.08.015.

    Google Scholar 

  • Poorna CA and Prema P (2006) Production and partial characterization of endoxylanase by Bacillus pumilus using agro-industrial residues. Biochem Eng J 32: 106–112

    Article  CAS  Google Scholar 

  • Ruanglek V, Maneewatthana D, Tripetchkul S (2006) Evaluation of Thai agro-industrial wastes for bio-ethanol production by zymomonas mobilis. Process Biochem 41: 1432–1437

    Article  CAS  Google Scholar 

  • Sánchez OJ and Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99: 5270–5295

    Article  PubMed  Google Scholar 

  • Sellami F, Jarboui R, Hachicha S et al. (2007) Co-composting of oil exhausted olive-cake, poultry manure and industrial residues of agro-food activity for soil amendment. Bioresour Technol 99: 1177–1188

    Article  PubMed  Google Scholar 

  • Shimada Y, Watanabe Y, Sugihara A et al. (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B: Enzym 17: 133–142

    Article  CAS  Google Scholar 

  • Siso MIG (1996) Biotechnological utilization of cheese whey: review. Bioresour Technol 57:1–11.

    Article  Google Scholar 

  • Soares M, Christen P, Pandey A et al. (2000) A novel approach for the production of natural aroma compounds using agro-industrial residue. Bioproc Eng 23: 695–699.

    Article  CAS  Google Scholar 

  • Switzenbaum MS and Jewell WJ (1980) Anaerobic attached-film expanded-bed reactor treatment. J Water Pollut Control Fed 52: 1953–1965.

    CAS  Google Scholar 

  • Vicente G, Martinez M, Aracil J et al. (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92: 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Zanichelli D, Carloni F, Hasanaj E et al. (2007) Production of Ethanol by an Integrated valorization of olive oil byproducts. Envron Sci Pollut Res 14: 5–6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chattopadhyay, S., Mukerji, A., Sen, R. (2009). Biofuels. In: Singh nee’ Nigam, P., Pandey, A. (eds) Biotechnology for Agro-Industrial Residues Utilisation. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9942-7_4

Download citation

Publish with us

Policies and ethics