Skip to main content

Abstract

Ligninolytic enzymes are involved in the degradation of the complex and recalcitrant polymer lignin. This group of enzymes is highly versatile in nature and they find application in a wide variety of industries. The biotechnological significance of these enzymes has led to a drastic increase in the demand for these enzymes in the recent time. Production of enzymes/metabolites from microbial sources is a costly affair and the only alternate to minimize the production cost is the use of inexpensive raw materials. The utilization of agro-industrial residues in this aspect is much appreciated due to their low cost and ease in availability. Adopting solid-state fermentation for enzyme production may add to the benefit of reducing the production costs. The studies have proved that huge quantities of lignocellulosic residues are available world wide for the production of ligninolytic enzymes. The current trend is to make use of every such locally available agro-industrial residue for enzymes production to meet the demand for the same from the industrial sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaslyng D, Rorbaek K, Sorensen NH (1996) An enzyme for dying keratinous fibres. Int Pat Appl WO9719998

    Google Scholar 

  • Argyropoulos DS, Menachem SB (1997) Lignin. In: Eriksson K (Ed.), Biotechnology in the Pulp and Paper Industry, Springer, Berlin, pp. 127–158

    Chapter  Google Scholar 

  • Arias ME, Arenas M, Rodriguez J, Soliveri J, Ball AS, Hernandez M (2003) Kraft pulp biobleaching and mediated oxidation of a non-phenolic substrate by laccase from streptomyces cyaneus CECT 3335. Appl. Environ. Microbiol. 69:1953–1958

    Article  PubMed  CAS  Google Scholar 

  • Arora DS, Chander M, Gill PK (2002) Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int. Biodeterior. Biodegrad. 50: 115–120

    Article  CAS  Google Scholar 

  • Berrocal MM, Rodriguez J, Ball AS, Perez–Leblic MI, Arias ME (1997) Solubilization and mineralization of [14C] lignocellulose from wheat straw by Streptomyces cyaneus CECT 3335 during growth in solid state fermentation. Appl. Microbiol. Biotechnol. 48:379–384

    Article  CAS  Google Scholar 

  • Bourbonnais R, Paice MG (1988) Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem. J. 255:445–450

    PubMed  CAS  Google Scholar 

  • Buswell JA, Eriksson KE (1988) Methods in Enzymology 161, Wood WA, Kellogg SC (Eds), Academic press, p. 271

    Google Scholar 

  • Call HP, Mücke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym-process). J. Biotechnol. 53:163–202

    Article  CAS  Google Scholar 

  • Chabannes M (2001) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J. 28:271–282

    Article  PubMed  CAS  Google Scholar 

  • Chawachart N, Khanongnuch C, Watanabe T, Lumyong S (2004) Rice bran as an efficient substrate for laccase production from thermotolerant basidiomycete Coriolus versicolor strain RC3. Fungal Divers. 15:23–32

    Google Scholar 

  • Chung N, Aust SD (1995) Veratryl alcohol-mediated indirect oxidation of phenol by lignin peroxidase. Arch. Biochem. Biophys. 316:733–737

    Article  PubMed  CAS  Google Scholar 

  • Claus H (2004) Laccases: Structure, reactions, distribution. Micron 35:93–96

    Article  PubMed  CAS  Google Scholar 

  • Crecchio C, Ruggiero P, Pizzigallo MDR (1995) Polyphenol oxidases immobilized in organic gels: Properties and applications in the detoxification of aromatic compounds. Biotechnol. Bioeng. 48:585–591

    Article  PubMed  CAS  Google Scholar 

  • Deobald LA, Crawford DL (1989) Lignin biotransformation by an aromatic aldehyde oxidase produced by Streptomyces viridosporus T7A. Appl. Biochem. Biotechnol 20/21:153–163

    Article  Google Scholar 

  • Elias LG (1979) In: J.E. Braham, R. Bressani (Eds.), Coffee Pulp: Composition, Technology and Utilization, Publication 108e, International Development Research Centre, Ottawa, Ont, pp. 17–24

    Google Scholar 

  • Eriksson KE, Blanchette RA, Ander P (1990) Microbial and Enzymatic Degradation of Wood and Wood Components. Springer, Berlin Heidelberg, New York

    Google Scholar 

  • Esposito E, Paulillo SM, Manfio GP (1998) Biodegradation of the herbicide diuron in soil by indigenous actinomycetes. Chemospere. 37:541–548

    Article  CAS  Google Scholar 

  • Ferry Y, Leech D (2005) Amperometric detection of catecholamine neurotransmitters using electrocatalytic substrate recycling at a laccase electrode. Electroanal. 17:2113–2119

    Google Scholar 

  • Galliano H, Gas G, Seris JC, Boudet AU (1991) Lignin degradation by Ridigoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme Microb. Technol. 13:478–482

    Article  CAS  Google Scholar 

  • Givaudan A, Effosse A, Faure D, Potier P, Bouillant ML, Bally R (1993) Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in nonmotile strains of Azospirillum lipoferum. FEMS Microbiol. Lett. 108:205–210

    Article  CAS  Google Scholar 

  • Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn (II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch. Biochem. Biophys. 242:329–341

    Article  PubMed  CAS  Google Scholar 

  • Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem. Biophysn. Res. Comm. 114:1077–1083

    Article  CAS  Google Scholar 

  • Gonçalves AR, Esposito E, Benar P (1998) Evaluation of Panus tigrinus in the delignification of sugarcane bagasse by FTIR-PCA and pulp properties. J. Biotechnol. 66:177–185

    Article  Google Scholar 

  • Hammel KE (1992) Metal Ions in Biological Systems. Sigel H, Sigel A. Eds; Marcel Dekker, Inc, New York. 28:41

    Google Scholar 

  • Hammel KE, Jensen KA, Mozuch MD, Landucci LL, Tien M, Pease EA (1993) Ligninolysis by a purified lignin peroxidase. J. Biol. Chem. 268:12274–12281

    PubMed  CAS  Google Scholar 

  • Hoshino F, Kajino T, Sugiyama H, Asami O, Takahashi H (2002) Thermally stable and hydrogen peroxide tolerant manganese peroxidase (MnP) from Lenzites betulinus. FEBS Lett. 530:249–252

    Article  PubMed  CAS  Google Scholar 

  • Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. Proc. Natl. Acad. Sci. USA Biochem. 87:2936–2940

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Ann. Rev. Microbiol. 41:465–505

    Article  CAS  Google Scholar 

  • Kokol V, Doliška A, Eichlerova I, Baldrian P, Nerud F (2007) Decolorization of textile dyes by whole cultures of Ischnoderma resinosum and by purified laccase and Mn-peroxidase. Enzyme Microb. Technol. 40:1673–1677

    CAS  Google Scholar 

  • Kuhad RC, Singh A, Eriksson KEL. Microorganisms and enzymes involved in the degradation of plant fiber cell wall. In: Eriksson KEL, editor. Biotechnology in the Pulp and Paper Industry. Advances in Biochemical Engineering Biotechnology. Berlin: Springer Verlag; 1997.Chapter 2

    Google Scholar 

  • Leatham GF (1986) Ligninolytic activities of Lentinus edodes and Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 24:51–58

    Article  CAS  Google Scholar 

  • Leisola MSA, Fietcher A (1985) Advances in Biotechnological Processes, Mizrahi A, Van Wezel AL (Eds.), Alan R. Liss, New York, p. 59

    Google Scholar 

  • Lobos S, Larraín J, Cullen D, Vicuna R (1994) Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiol. 140:2691–2698

    Article  CAS  Google Scholar 

  • Maltseva OV, Niku-Paavola ML, Leontievsky AA, Myasoedova NM, Golovleva LA (1991) Ligninolytic enzymes of the white rot fungus Panus tigrinus. Biotechnol. Appl. Biochem. 13:291–302

    CAS  Google Scholar 

  • Marnyye AV, Gerardo M, Jean-Michel S (2002) Waste-reducing cultivation of Pleurotus ostreatus andPleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes. World J. Microbiol. Biotechnol. 18:201–207

    Article  Google Scholar 

  • Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J. Bio. Chem. 277:18849–18859

    Article  CAS  Google Scholar 

  • Masud Hossain SK, Anantharaman N (2006) Activity enhancement of ligninolytic enzymes of Trametes versicolor with bagasse powder. Afr. J. Biotechnol. 5:189–194

    Google Scholar 

  • Minussi RC, Pastore GM, Duran N (2002) Potential applications of laccase in the food industry. Trends Food Sci. Technol. 13:205–216

    Article  CAS  Google Scholar 

  • Niladevi KN, Jacob N, Prema P (2008) Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: purification and characterization. Process Biochem. 43:654–660

    Article  CAS  Google Scholar 

  • Niladevi KN, Prema P (2005) Mangrove actinomycetes as the source of ligninolytic enzymes. Actinomycetol. 19:40–47

    Article  CAS  Google Scholar 

  • Niladevi KN, Prema P (2008) Effect of inducers and process parameters on laccase production by Streptomyces psammoticus and its application in dye decolourization. Bioresour. Technol. 99:4583–4589

    Article  PubMed  CAS  Google Scholar 

  • Niladevi KN, Sukumaran RK, Prema P (2007) Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation. J. Ind. Microbiol. Biotechnol. 34: 665–674

    Article  PubMed  CAS  Google Scholar 

  • Nozomi K, Tohru S, Keiichi K (2002) Purification and characterization of an alkaline manganese peroxidase from Aspergillus terreus LD-1. J. Biosci. Bioeng. 93:405–410

    Google Scholar 

  • Osma JF, Toca Herrera JL, Rodriguez Couto S (2007) Banana skin: A novel waste for laccase production by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration. Dyes Pigments. 75:32–37

    Article  CAS  Google Scholar 

  • Pal M, Calvo AM, Terron MC, Gonzalez AE (1995) Solid-state fermentation of sugarcane bagasse with Flammulina velutipes and Trametes versicolor World J. Microbiol. Biotechnol 11:541–545

    CAS  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid-state fermentation for the production of industrial enzymes. Curr Sci 77:146–162

    Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, Roussos S (2000c) Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem. Eng. J. 6:153–162

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000b) Biotechnological potential of agro-industrial residues. I. Sugarcane bagasse. Bioresour. Technol. 74:69–80

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Solid-State Fermentation in Biotechnology. Asiatech Publishers Inc., New Delhi, pp 221

    Google Scholar 

  • Pandey A, Socool CR, Mitichell D (2000a) New developments in solid-state fermentation. I. Bioprocess and products. Process Biochem. 35:1153–1169

    CAS  Google Scholar 

  • Papinutti VL, Diorio LA, Forchiassin F (2003) Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran. J. Ind. Microb. Biotechnol. 30:157–160

    CAS  Google Scholar 

  • Pasti MB, Pometto III AL, Nuti MP, Crawford DL (1990) Lignin solubilizing ability of actinomycetes isolated from Termite (Termitidae) gut. Appl. Environ. Microbiol. 56:2213–2318

    PubMed  CAS  Google Scholar 

  • Pazarlioglu NK, Sariijik M, Telefoncu A (2005) Laccase: Production by Trametes versicolor and application to denim washing. Process Biochem. 40:1673–1678

    Article  CAS  Google Scholar 

  • Perie FH, Sheng D, Gold MH (1996) Purification and characterization of two manganese peroxidase isozymes from the white-rot basidiomycete Dichomitus squalens. Biochem. Biophys. Acta. 1297:139–148

    PubMed  Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90 A○ resolution containing a full complement of coppers. J. Biol. Chem. 277:37663–37669

    Article  PubMed  CAS  Google Scholar 

  • Pradeep V, Datta M (2002) Production of ligninolytic enzymes for decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Appl. Biochem. Biotechnol. 102:109–118

    Article  Google Scholar 

  • Ramachandra M, Pometto AL, Crawford DL (1987) Extracellular enzyme activities during lignocellulose degradation by Streptomyces spp: A comparative study of wild type and genetically manipulated strains. Appl. Environ. Microbiol. 53:2754–2760

    PubMed  CAS  Google Scholar 

  • Renganathan V, Miki K, Gold MH (1985) Multiple molecular forms of diarylpropane oxygenase, an H2O2-requiring, lignin-degrading enzyme from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 241:304–314

    Article  PubMed  CAS  Google Scholar 

  • Revankar MS, Desai KM, Lele SS (2007) Solid-state fermentation for enhanced production of laccase using indigenously isolated Ganoderma sp. Appl. Biochem. Biotechnol. 143:16–26

    Article  PubMed  CAS  Google Scholar 

  • Robinson T, Nigam P (2003) Bioreactor design for protein enrichment of agricultural residues by solid state fermentation. Biochem. Eng. J. 13:197–203

    Article  CAS  Google Scholar 

  • Rodriguez Couto S, Lopez E, Sanroman MA (2006) Utilization of grape seeds for laccase production in solid-state fermentors. J. Food Eng. 74:263–267

    Article  CAS  Google Scholar 

  • Rodriguez Couto S, Sanroman MA (2005) Application of solid-state fermentation to ligninolytic enzyme production. Biochem. Eng. J. 22:211–219

    Article  CAS  Google Scholar 

  • Rosales E, Rodriguez Couto S, Sanroman MA (2005) Reutilisation of food processing wastes for production of relevant metabolites: Application to laccase production by Trametes hirsuta. J. Food Eng. 66:419–423

    Article  Google Scholar 

  • Rosales E, Rodriguez Couto S, Sanroman MA (2007) Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enzyme Microb. Technol. 40:1286–1290

    Article  CAS  Google Scholar 

  • Salmones D, Mata G, Waliszewski KN (2005) Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: Biomass production and substrate biodegradation. Biores. Technol. 96:537–544

    Article  CAS  Google Scholar 

  • Schlosser D, Grey R, Fritsche W (1997) Patterns of ligninolytic enzymes in Trametes versicolor. Distribution of extra- and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood. Appl. Microbial. Biotechnol. 47:412–418

    Article  CAS  Google Scholar 

  • Schmidt B, Heimgartner U, Kozulic B, Leisola MSA (1990) Lignin peroxidases are oligomannose type glycoproteins. J. Biotechnol. 13:223–228

    Article  CAS  Google Scholar 

  • Schoemaker HE, Harvey PJ, Bowen RM, Palmer JM (1985) On the mechanism of enzymatic lignin breakdown. FEBS Lett. 183:2407–2412

    Article  Google Scholar 

  • Shah MP, Reddy GV, Banerjee R, Ravindra Babu P, Kothari IL (2005) Microbial degradation of banana waste under solid state bioprocessing using two lignocellulolytic fungi (Phylosticta spp. MPS-001 and Aspergillus spp. MPS-002). Process Biochem. 40:445–451

    Article  CAS  Google Scholar 

  • Songulashvili G, Elisashvili V, Wasser SP, Nevo E, Hadar Y (2007) Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme Microb. Technol. 41:57–61

    Article  CAS  Google Scholar 

  • Srinivasan C, D’Souza TM, Boominathan K, Reddy CA. (1995) Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl. Environ. Microbiol. 61:4274–4277

    PubMed  CAS  Google Scholar 

  • Suzuki T, Endo K, Ito M, Tsujibo H, Miyamoto K, Inamori YA (2003) Thermostable laccase from Streptomyces lavendulae REN-7: Purification, Characterization, Nucleotide Sequence, And Expression. Biosci. Biotechnol. Biochem. 67:2167–2175

    Article  PubMed  CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium burds. Science (Washington) 221:661–662

    Article  CAS  Google Scholar 

  • Tomsovsky M, Homolka L (2003) Laccase and other ligninolytic enzyme activities of selected strains of Trametes spp. from different localities and substrates. Folia Microbiol. 48:413–418

    Article  CAS  Google Scholar 

  • Umezawa T, Higuchi T (1987) Mechanism of aromatic ring cleavage of β-O-4 lignin substructure models by lignin peroxidase. FEBS Lett. 218:255–260

    Article  CAS  Google Scholar 

  • Valli K, Wariishi H, Gold MH (1990) Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of veratryl alcohol in lignin biodegradation. Biochem. 29:8535–8539

    Article  CAS  Google Scholar 

  • Van Soest PJ (2006) Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. Technol. 130:137–171

    Article  CAS  Google Scholar 

  • Vares T, Kalsi M, Hatakka A (1995) Lignin peroxidases, manganese peroxidases and other ligninolytic enzymes produced by Phlebia radiate during solid state fermentation of wheat straw. Appl. Environ. Microbiol. 61:3515–3520

    PubMed  CAS  Google Scholar 

  • Vicuna R (1988) Bacterial degradation of lignin. Enzyme Microb. Technol. 10:646–655

    Article  CAS  Google Scholar 

  • Wang Y, Vazquez-Duhalt R, Pickard MA (2002) Purification, characterization, and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258. Curr. Microbiol. 45: 77–87

    Article  PubMed  CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 22: 161–187

    Article  PubMed  CAS  Google Scholar 

  • Yang JS, Liu W, Ni JR (2006) Isolation, identification of lignin-degrading bacteria and purification of lignin peroxidase. Huan Jing Ke Xue. 27: 981–985

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Niladevi, K. (2009). Ligninolytic Enzymes. In: Singh nee’ Nigam, P., Pandey, A. (eds) Biotechnology for Agro-Industrial Residues Utilisation. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9942-7_22

Download citation

Publish with us

Policies and ethics