Skip to main content

CMOS IR-UWB Transceiver System Design for Contact-Less Chip Testing Applications

  • Chapter
Circuits and Systems for Future Generations of Wireless Communications

Part of the book series: Series on Integrated Circuits and Systems ((ICIR))

Today's semiconductor products are more complex and highly integrated due to the increasing demands for system-on-chip solution, which results in a significant increase in time, cost and complexity of testing. Testing of semiconductors has become a significant and growing problem in the very-large-scale-integration (VLSI) circuit manufacturing industry [1, 2]. Semiconductor testing issues such as smaller pad size, increased pad density, increased signal input/output (I/O) frequencies, longer test times, and probe card contact and alignment are restricting the progress towards smaller, faster, and more economical integrated circuits [3].

Conventional wafer probing techniques utilize probe tips to contact the deviceunder- test (DUT) physically and have the limitations of the number of pads, pitch sizes, operating frequency, parallel testing capability and risk of damage to the DUT. Moreover, the calibration of probe tips and silicon substrate especially for highspeed RF circuits have made testing more complicated and may affect the accuracy of testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. A. Floyd et al., “Intra-Chip Wireless Interconnection for Clock Distribution Implemented with Integrated Antennas”, IEEE Journal of Solid-State Circuits, Vol. 37, No. 5, pp. 543–552, May 2002.

    Article  Google Scholar 

  2. A. Valdes-Garcia, J. Silva-Martinez, and E. Sanchez-Sinencio, “On-Chip Testing Techniques for RF Wireless Transceivers”, IEEE Design & Test of Computers, Vol. 23, pp. 268–277, April 2006.

    Article  Google Scholar 

  3. M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Prentice-Hall, Columbus, NJ, 2001.

    Google Scholar 

  4. IEEE Standards Committee. IEEE standard test access port and boundary-scan architecture, July 1990. IEEE Std 1149.1-1990, IEE, 345 East 47th street, New York, NY, 10017–2349.

    Google Scholar 

  5. H. Eberle and A. Wander, “Testing Systems Wirelessly”, Proceedings of the 22nd IEEE VLSI Test Symposium, pp. 335–340, 2004.

    Google Scholar 

  6. F. Carrez et al., “A Low-Cost Active Antenna for Short-Range Communication Applications”, IEEE Microwave and Guided Wave Letters, Vol. 8, No. 6, pp. 215–217, June 1998.

    Article  Google Scholar 

  7. P. K. Saha, N. T. Sasaki, Kikkawa, “A CMOS UWB Transmitter for Intra/Inter-Chip Wireless Communication”, IEEE Eighth International Symposium on Spread Spectrum Techniques and Applications, pp. 962–966, September 2004.

    Google Scholar 

  8. C. E. Shannon, “A Mathematical Theory of Communications,” Proceedings of the IRE, Vol. 37, pp. 10–21, January 1949.

    Article  MathSciNet  Google Scholar 

  9. Federal Communications Commission, “First Report and Order, Revision of Part15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems”, ET Docket 98–153, February 14, 2002.

    Google Scholar 

  10. S. Roy et al., “Ultrawideband Radio Design: The Promise of High-Speed, Short-Range Wireless Connectivity” Proceedings of the IEEE, Vol. 92, No. 2, pp. 295–311, April 2004.

    Article  Google Scholar 

  11. M. Z. Win and R. A. Scholtz, “Ultra-Wide Bandwidth Time-Hopping Spread-Spectrum Impulse Radio for Wireless Multiple-Access Communications”, IEEE Trans. Communications, Vol. 48, pp. 669–679, April 2000.

    Article  Google Scholar 

  12. http://grouper.ieee.org/groups/802/15/pub/TG3a_CFP.html

  13. W. Chung et al., “Signaling and Multiple Access Techniques for Ultra Wideband 4G Wireless Communication Systems” IEEE Wireless Communications, pp. 46–55, April 2005.

    Google Scholar 

  14. X. Chen and S. Kiaei, “Monocycle Shapes for Ultra Wideband System” IEEE Symposium on Circuits and Systems, pp. 597–600, April 2002.

    Google Scholar 

  15. M. Z. Win, “A Unified Spectral Analysis of Generalized Time-hopping Spread-Spectrum Signals in the Presence of Timing Jitter”, IEEE Journal on Selected Areas in Communications, Vol. 2, No. 9, pp. 1664–1676, December 2002.

    Article  Google Scholar 

  16. P. Heydari, “Design Considerations for Low-Power Ultra Wideband Receivers”, IEEE 6th Symposium on Quality Electronic Design, pp. 1–6, 2005.

    Google Scholar 

  17. M. Choi and A. A. Abidi, “A 6 b 1.3 GSample/s A/D Converter in 0.35 m CMOS”, IEEE Solid-State Circuits Conference, pp. 126–127, February 2001.

    Google Scholar 

  18. S. Bagga, G. Vita, S. A. P. Haddad, W A. Serdijn and J. R. Long, “A PPM Gaussian Pulse Generator for Ultra-Wideband Communications” IEEE Symposium on Circuits and Systems, pp. 109–112, May 2004.

    Google Scholar 

  19. Y. Wang, A. Ho, K. Iniewski and V. Gaudet, “Inductive ESD Protection For Narrow Band and Ultra-Wideband CMOS LNAs” IEEE Symposium on Circuits and Systems, pp. 3920–3923, May 2007.

    Google Scholar 

  20. J. Long, “Monolithic Transformers for Silicon RFIC Design”, IEEE Journal of Solid-State Circuits, Vol. 35, No. 9, pp. 1368–1382, 2000.

    Article  Google Scholar 

  21. A. M. Niknejad. “Electromagnetics for High-Speed Analog and Digital Communication Circuits”, Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  22. A. Bevilacqua and A. M. Niknejad, “An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receiver”, IEEE Journal of Solid-State Circuits, Vol. 39, No. 12, pp. 2259–2268, December 2004.

    Article  Google Scholar 

  23. A. Ismail and A. A. Abidi, “A 3—10-GHz Low-Noise Amplifier with Wideband LC-Ladder Matching Network”, IEEE Journal of Solid-State Circuits, Vol. 39, No. 12, pp. 2269–2277, December 2004.

    Article  Google Scholar 

  24. Y. Lu et al. “A Novel CMOS Low-Noise Amplifier Design for 3.1 to 10.6 GHz Ultra-Wide-Band Wireless Receivers”, IEEE Trans. on Circuits and Systems I, Vol. 53, No. 8, pp. 1683–1692, 2006.

    Article  Google Scholar 

  25. S. B. T. Wang, A. M. Niknejad and R. W. Broderson, “A Sub-mW 960-MHz Ultera-Wideband CMOS LNA”, IEEE Radio Frequency Integrated Circuits Symposium, pp. 35–38, 2005.

    Google Scholar 

  26. S. VIshwakarma, S. Jung and Y. Joo, “Ultra Wideband CMOS Low Noise Amplifier with Active Input Matching”, Ultra Wideband Systems and Technology Conference, pp. 415– 429, 2004.

    Google Scholar 

  27. Y. Wang and Z. Khan, “A Very Low Voltage Design for Different CMOS Low-Noise Amplifier Topologies at 5GHz,” IEEE Midwest Symposium on Circuits and Systems 2005, pp. 42–45, August 2005.

    Google Scholar 

  28. B. Analui and A. Hajimiri, “Bandwidth Enhancement for Transimpedance Amplifiers” IEEE Journal of Solid-State Circuits, Vol. 39, No. 8, pp. 1263–1270, August 2004.

    Article  Google Scholar 

  29. T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd Ed., Cambridge University Press, Cambridge, pp. 348–351, 2004.

    Google Scholar 

  30. D. J. Allstot et al., “Design Considerations for CMOS low noise amplifiers” IEEE Radio Frequency Integrated Circuits Symposium, pp. 97–100, June 2004.

    Google Scholar 

  31. Z. H. Wang, “On-Chip ESD Protection for Integrated Circuits”, Kluwer, Dordrecht, 2002.

    Google Scholar 

  32. Liu et al., “A 6.5kV ESD Protected 3–5GHz Ultra-wideband BiCMOS Low Noise Amplifier Using Interstage Gain Roll-off Compensation”, Ultra Wideband Conference, pp. 525– 529, 2005.

    Google Scholar 

  33. M. I. Natarajan et al., “RFCMOS ESD Protection and Reliability”, Proceedings of the 12th International Symposium on Physical and Failure Analysis, pp. 59–66, 2005.

    Google Scholar 

  34. P. Leroux and M. Steyaert, “High-performance 5.2GHz LNA with On-chip Inductor to Provide ESD Protection”, Electronic Letters, Vol. 37, pp. 467–469, 2001.

    Article  Google Scholar 

  35. Y. Wang, A. Ho, K. Iniewski and V. Gaudet, “Inductive ESD Protection For Narrowband and UWB CMOS LNAs”, IEEE Symposium on Circuits and Systems, pp. 3920–3923, 2007.

    Google Scholar 

  36. Y. Wang, A. M. Niknejad, V. Gaudet and K. Iniewski, “A CMOS IR-UWB Transceiver Design for Contact-less Chip Testing Applications”, IEEE TCASII, Vol. 55, No. 4, pp. 334–338, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wang, Y., Niknejad, A.M., Gaudet, V., Iniewski, K. (2009). CMOS IR-UWB Transceiver System Design for Contact-Less Chip Testing Applications. In: Tasić, A., Serdijn, W.A., Larson, L.E., Setti, G. (eds) Circuits and Systems for Future Generations of Wireless Communications. Series on Integrated Circuits and Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9917-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9917-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9918-2

  • Online ISBN: 978-1-4020-9917-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics