Skip to main content

Effects of Tumor Microenvironment on Immunity and Consequent Clinical Considerations

  • Chapter
Cancer Microenvironment and Therapeutic Implications

Abstract

Immune response to cancer is a dynamic process in which uncontrolled growth of cancer cells is countered by various protective mechanisms. However, the progression of the disease can be interpreted as failure of the antitumor immune response. Recent studies indicate host immune response cooperates with cancer cells to promote their growth and dissemination through the production of several growth factors, cytokines, angiogenic factors, free radicals and proteolytic enzymes that are produced by stroma cells coordinated by tumor cells. Among the various microenvironmental factors hypoxia seems to play a central role in these processes and in promoting mechanisms leading to evasion of the immune system. Furthermore, recent discovery of a positive interaction with convectional therapeutic modalities, such as some chemotherapeutic drugs and radiotherapy, will permit new cocktails able to kill directly and indirectly cancer cells collaborating with the host immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasaki Y, Liu G, Chung NH, Ehtesham M, Black KL, Yu JS. Induction of a CD4+ T regulatory type 1response by cyclooxygenase-2-overexpressing glioma. J Immunol. 2004; 173:4352–59.

    PubMed  CAS  Google Scholar 

  • Allavena P, Sica A, Solinas G et al.: The inflammatory micro-environment in tumor progression. The role of tumor-associated macrophages. Critical Rev Oncol Hematol. 2008; 66:1–9.

    Google Scholar 

  • Apetoh L, Tesniere A, Ghiringhelli F et al.: Molecular interactions between dying tumor cells and the innate system determine the efficacy of convenctional anticancer therapies. Cancer Res. 2008; 68:4026–30.

    PubMed  CAS  Google Scholar 

  • Arias JI, Aller MA, Arias J.: Cancer cell: using inflammation to invade the host. Mol Cancer. 2007 Apr 16; 6:29.

    Google Scholar 

  • Baldwin AS.: Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest. 2001 Feb; 107(3):241–6.

    PubMed  CAS  Google Scholar 

  • Baronzio G, Freitas I.: Tumor Microenvironment Genesis and Implications on Cancer Immune Response. In Atlas Effectors of Anti-Tumor ImmunityKiselevsky, Mikhail V. (Ed.), 2008, Springer Science+Business Media.

    Google Scholar 

  • Baronzio G, Freitas I, Kwaan HC.: Tumor microenvironment and hemorheological abnormalities. Semin Thromb Hemost. 2003 Oct; 29(5):489–97.

    PubMed  Google Scholar 

  • Basu S, Binder RJ, Suto R et al.: Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000 Nov; 12(11):1539–46.

    PubMed  CAS  Google Scholar 

  • Ben-Baruch A.: Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol. 2006 Feb; 16(1): 38–52.

    PubMed  CAS  Google Scholar 

  • Beyer M, Kochanek M, Darabi K et al.: Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood. 2005 Sep 15; 106(6):2018–25.

    PubMed  CAS  Google Scholar 

  • Beyer M, Schultze JL.: Regulatory T cells in cancer. Blood. 2006 Aug 1; 108(3):804–11.

    PubMed  CAS  Google Scholar 

  • Bluestone JA, Abbas AK.: Natural versus adaptive regulatory T cells. Nat Rev Immunol. 2003 Mar; 3(3):253–7.

    PubMed  CAS  Google Scholar 

  • Bonazzi A, Mastyugin V, Mieyal PA et al.: Regulation of cyclooxygenase-2 by hypoxia and peroxisome proliferators in the corneal epithelium. J Biol Chem. 2000 Jan 28; 275(4):2837–44.

    PubMed  CAS  Google Scholar 

  • Borghesi L, Milcarek C. Innate versus adaptive immunity: a paradigm past its prime? Cancer Res. 2007 May 1; 67(9):3989–93.

    PubMed  CAS  Google Scholar 

  • Bronte V, Serafini P, Mazzoni A et al.: L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 2003 Jun; 24(6):302–6.

    PubMed  CAS  Google Scholar 

  • Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006 Mar 1; 107(5):1761–7.

    PubMed  CAS  Google Scholar 

  • Burnet FM. Immunological Surveillance. Pergamon Press, Oxford, 1997.

    Google Scholar 

  • Buzaid AC.: Strategies for combining chemotherapy and biotherapy in melanoma. Cancer Control. 2000 Mar–Apr; 7(2):185–97.

    PubMed  CAS  Google Scholar 

  • Camby I, Le Mercier M, Lefranc F et al.: Galectin-1: a small protein with major functions. TGlycobiology. 2006 Nov; 16(11):137R–157R.

    CAS  Google Scholar 

  • Carlos TM.: Leukocyte recruitment at sites of tumor: dissonant orchestration. J Leukoc Biol. 2001 Aug; 70(2):171–84.

    PubMed  CAS  Google Scholar 

  • Conze D, Weiss L, Regen PS et al.: Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res. 2001 Dec 15; 61(24):8851–8.

    PubMed  CAS  Google Scholar 

  • Correale P, Cusi MG, Tsang KY et al.: Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients. J Clin Oncol. 2005 Dec 10; 23(35):8950–8.

    PubMed  CAS  Google Scholar 

  • Curiel TJ.: Tregs and rethinking cancer immunotherapy. J Clin Invest. 2007 May; 117(5):1167–74.

    PubMed  CAS  Google Scholar 

  • Czesnikiewicz-Guzik M, Lorkowska B et al.: NADPH oxidase and uncoupled nitric oxide synthase are major sources of reactive oxygen species in oral squamous cell carcinoma. Potential implications for immune regulation in high oxidative stress conditions. J Physiol Pharmacol. 2008 Mar; 59(1):139–52.

    PubMed  CAS  Google Scholar 

  • Demaria S, Bhardwaj N, McBride WH et al.: Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys. 2005 Nov 1; 63(3):655–66.

    PubMed  Google Scholar 

  • Demaria S, Formenti SC.: Sensors of ionizing radiation effects on the immunological microenvironment of cancer. Int J Radiat Biol. 2007 Nov–Dec; 83(11–12):819–25.

    PubMed  CAS  Google Scholar 

  • Demasi M, Cleland LG, Cook-Johnson RJ et al.: Effects of hypoxia on monocyte inflammatory mediator production: Dissociation between changes in cyclooxygenase-2 expression and eicosanoid synthesis. J Biol Chem. 2003 Oct 3; 278(40):38607–16.

    PubMed  CAS  Google Scholar 

  • Diefenbach A, Hsia JK, Hsiung MY et al.: A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur J Immunol. 2003 Feb; 33(2):381–91.

    PubMed  CAS  Google Scholar 

  • Diefenbach A, Raulet DH.: The innate immune response to tumors and its role in the induction of T-cell immunity. Immunol Rev. 2002 Oct; 188:9–21.

    PubMed  CAS  Google Scholar 

  • Dinarello CA. Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr. 2006 Feb; 83(2):447S–455S.

    PubMed  CAS  Google Scholar 

  • Dranoff G: Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Can. 2004; 4:11–22.

    CAS  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H et al.: Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002 Nov; 3(11):991–8.

    PubMed  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD et al.: The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004 Aug; 21(2):137–48.

    PubMed  CAS  Google Scholar 

  • Emens LA.: Chemotherapy, and tumor immunity: an unexpected collaboration. Front Biosci 2008; 13:249–257.

    PubMed  CAS  Google Scholar 

  • Emens LA, Machiels J, Reilly R et al.: Chemotherapy: friend or foe for cancer vaccines?. Curr Opin Mol Ther. 2001; 3:77–84.

    PubMed  CAS  Google Scholar 

  • Elpek KG, Lacelle C, Singh NP et al.: CD4+CD25+ T regulatory cells dominate multiple immune evasion mechanisms in early but not late phases of tumor development in a B cell lymphoma model. J Immunol. 2007 Jun 1; 178(11):6840–8.

    PubMed  CAS  Google Scholar 

  • Fonseca C, Dranoff G: Capitalizing on the immunogenicity of dying tumor cells. Clin Cancer Res. 2008; 14:1603–1608.

    PubMed  CAS  Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV et al.: Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996 Sep; 16(9):4604–13.

    PubMed  CAS  Google Scholar 

  • Frey AB.: Myeloid suppressor cells regulate the adaptive immune response to cancer. J Clin Invest. 2006 Oct; 116(10):2587–90.

    PubMed  CAS  Google Scholar 

  • Fricke I, Gabrilovich DI.: Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Invest. 2006; 35(3–4):459–83.

    PubMed  CAS  Google Scholar 

  • Fukumura D, Kashiwagi RK, Jain RK: The role of nitric oxide in tumor progression. Nat rev Cancer 2006; 6:521–34.

    PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Velders MP, Sotomayor EM et al.: Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol. 2001 May 1; 166(9):5398–406.

    PubMed  CAS  Google Scholar 

  • Gallina G, Dolcetti L, Serafini P et al.: Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 2006 Oct; 116(10): 2777–90.

    PubMed  CAS  Google Scholar 

  • Ganss R, Hanahan D.: Tumor microenvironment can restrict the effectiveness of activated antitumor lymphocytes. Cancer Res. 1998 Oct 15; 58(20):4673–81.

    PubMed  CAS  Google Scholar 

  • Gao JQ, Okada N, Mayumi T et al.: Immune cell recruitment and cell-based system for cancer therapy. Pharm Res. 2008 Apr; 25(4):752–68.

    PubMed  CAS  Google Scholar 

  • Ghezzi P, Dinarello CA, Bianchi M et al.: Hypoxia increases production of interleukin-1 and tumor necrosis factor by human mononuclear cells. Cytokine. 1991 May; 3(3):189–94.

    PubMed  CAS  Google Scholar 

  • Ghiringhelli F, Larmonier N, Schmitt E et al.: CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004 Feb; 34(2):336–44.

    PubMed  CAS  Google Scholar 

  • Ghiringhelli F, Menard C, Puig PE et al.: Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother. 2007 May; 56(5):641–8.

    PubMed  CAS  Google Scholar 

  • Gottfried E, Kunz-Schughart LA, Ebner S et al.: Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 2006 Mar 1; 107(5):2013–21.

    PubMed  CAS  Google Scholar 

  • Graf MR, Merchant RE.: Interleukin-6 transduction of a rat T9 glioma clone results in attenuated tumorigenicity and induces glioma immunity in Fischer F344 rats. J Neurooncol. 1999; 45(3):209–18.

    PubMed  CAS  Google Scholar 

  • Groh V, Wu J, Yee C, Spies T.: Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002 Oct 17; 419(6908):734–8.

    PubMed  CAS  Google Scholar 

  • Haddad JJ.: Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal. 2002 Nov; 14(11):879–97.

    PubMed  CAS  Google Scholar 

  • Harizi H and Gualde N.: Pivotal role ogf PGE-2 and IL-10 in the cross-regulation of Dendritic cell-derived inflammatory mediators. Cell Mol Immunol. 2006; 3:271–7.

    PubMed  CAS  Google Scholar 

  • Harris TJ, Hipkiss EL, Borzillary S et al.: Radiotherapy augments the immune response to prostate cancer in a time-dependent manner. Prostate. 2008 Sep 1; 68(12):1319–29.

    PubMed  Google Scholar 

  • Hellwig-Bürgel T, Stiehl DP, Wagner AE et al.: Review: hypoxia-inducible factor-1 (HIF-1): a novel transcription factor in immune reactions. J Interferon Cytokine Res. 2005 Jun; 25(6): 297–310.

    PubMed  Google Scholar 

  • Höckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001 Feb 21; 93(4):266–76.

    PubMed  Google Scholar 

  • Houghton AN, Guevara-Patiño JA.: Immune recognition of self in immunity against cancer. J Clin Invest. 2004 Aug; 114(4):468–71.

    PubMed  CAS  Google Scholar 

  • Huang B, Pan PY, Li Q et al.: Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006 Jan 15; 66(2):1123–31.

    PubMed  CAS  Google Scholar 

  • Jewett A, Cacalano NA, Teruel A et al.: Inhibition of nuclear factor kappa B (NFkappaB) activity in oral tumor cells prevents depletion of NK cells and increases their functional activation. Cancer Immunol Immunother. 2006a Sep; 55(9):1052–63.

    Google Scholar 

  • Jewett A, Head C, Cacalano NA.: Emerging mechanisms of immunosuppression in oral cancers. J Dent Res. 2006b Dec; 85(12):1061–73.

    Google Scholar 

  • Joon Yun A, Bazar KA, Lee PY.: Tumors may modulate host immunity partly through hypoxia-induced sympathetic bias. Med Hypotheses. 2004; 63(2):352–6.

    PubMed  CAS  Google Scholar 

  • Juang CM, Hung CF, Yeh JY et al.: Regulatory T cells: potential target in anticancer immunotherapy. Taiwan J Obstet Gynecol. 2007 Sep; 46(3):215–21.

    PubMed  Google Scholar 

  • Jung YJ, Isaacs JS, Lee S et al.: IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 2003 Nov; 17(14):2115–7.

    PubMed  CAS  Google Scholar 

  • Jung JO, Lee HG, Cho IH et al.: STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J. 2005; 19:1296–8.

    PubMed  CAS  Google Scholar 

  • Kaidi A, Qualtrough D, Williams AC et al.: Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res. 2006 Jul 1; 66(13): 6683–91.

    PubMed  CAS  Google Scholar 

  • Karin M, Greten FR.: NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005 Oct; 5(10):749–59.

    PubMed  CAS  Google Scholar 

  • Kazama H, Ricci JE, Herndon JM et al.: Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity. 2008 Jul; 29(1):21–32.

    PubMed  CAS  Google Scholar 

  • Kerbel RS.: Tumor angiogenesis. N Engl J Med. 2008 May 8; 358(19):2039–49.

    PubMed  CAS  Google Scholar 

  • Kidd P.: Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev. 2003 Aug; 8(3):223–46.

    PubMed  Google Scholar 

  • Kleinerman ES, Zwelling LA, Muchmore AV.: Enhancement of naturally occurring human spontaneous monocyte-mediated cytotoxicity by cis-diamminedichloroplatinum(II). Cancer Res. 1980 Sep; 40(9):3099–102.

    PubMed  CAS  Google Scholar 

  • Kono H, Rock KL.: How dying cells alert the immune system to danger. Nat Rev Immunol. 2008 Apr; 8(4):279–89.

    PubMed  CAS  Google Scholar 

  • Kryczek I, Wei S, Keller E, Liu R, et al.: Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol. 2007 Mar; 292(3):C987–95.

    PubMed  CAS  Google Scholar 

  • Kusmartsev S, Gabrilovich DI.: Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol. 2003 Aug; 74(2):186–96.

    PubMed  CAS  Google Scholar 

  • Kusmartsev S, Gabrilovich DI.: Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev. 2006a Sep; 25(3):323–31.

    Google Scholar 

  • Kusmartsev S, Gabrilovich DI.: Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother. 2006b Mar; 55(3):237–45.

    Google Scholar 

  • Ladoire S, Arnould L, Apetoh L et al.: Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin Cancer Res. 2008 Apr 15;14(8):2413–20.

    PubMed  CAS  Google Scholar 

  • Lardner A.: The effects of extracellular pH on immune function. J Leukoc Biol. 2001 Apr; 69(4):522–30.

    PubMed  CAS  Google Scholar 

  • Le QT, Shi G, Cao H, Nelson DW et al.: Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol. 2005 Dec 10; 23(35):8932–41.

    PubMed  CAS  Google Scholar 

  • Lederer JA, Rodrick ML, Mannick JA. The effects of injury on the adaptive immune response. Shock. 1999 Mar; 11(3):153–9.

    PubMed  CAS  Google Scholar 

  • Lee JR, Dalton RR, Messina JL et al.: Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab Invest. 2003 Oct; 83(10):1457–66.

    PubMed  CAS  Google Scholar 

  • Liao Y-P, Schaue D, Mc Bride WH.: Modification of tumor microenvironment to enhance immunity. Frontiers in Bioscience 2007; 12:3576–600.

    PubMed  CAS  Google Scholar 

  • Lin WW, Karin M.: A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007 May; 117(5):1175–83.

    PubMed  CAS  Google Scholar 

  • Lin CC, Wang TE, Liu CY et al.: Potentiation of the immunotherapeutic effect of autologous dendritic cells by pretreating hepatocellular carcinoma with low-dose radiation. Clin Invest Med. 2008; 31(3):E150-9.

    PubMed  Google Scholar 

  • López-Lázaro M.: HIF-1: hypoxia-inducible factor or dysoxia-inducible factor? FASEB J. 2006 May; 20(7):828–32.

    PubMed  Google Scholar 

  • Lord EM, Frelinger JC: Tumor immunotherapy: Cytokines and antigen presentation. Cancer Immunol Immunother. 1998; 46:75–81.

    PubMed  CAS  Google Scholar 

  • Lucas T, Abraham D, Aharinejad S.: Modulation of tumor associated macrophages in solid tumors. Front Biosci. 2008 May 1; 13:5580–8.

    PubMed  CAS  Google Scholar 

  • Lucey DR, Clerici M, Shearer GM.: Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev. 1996 Oct; 9(4):532–62.

    PubMed  CAS  Google Scholar 

  • Lukashev D, Klebanov B, Kojima H et al.: Hypoxia – inducible factor 1 α and its activation short isofporm I.1. Negatively regulate functions of CD4+ and CD8+ lymphocytes. J Immunol. 2006; 177:4962–4965.

    PubMed  CAS  Google Scholar 

  • Machiels JP, Reilly RT, Emens LA et al.: Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte7macrophage- colony stimulating factor- secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 2001; 61: 3689–97.

    PubMed  CAS  Google Scholar 

  • Mantovani A, Romero P, Palucka AK et al.: Tumour immunity: effector response to tumour and role of the microenvironment. Lancet. 2008 Mar 1; 371(9614):771–83.

    PubMed  CAS  Google Scholar 

  • Mailloux AW, Young MRY.: Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) produce CCL22 which selectively recruits regulatory T-cells (Tregs) to the tumor microenvironment FASEB J. 2008; 22:1078.9 [Meeting Abstract]

    Google Scholar 

  • Majno G, Joris I.: Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan; 146(1):3–15.

    PubMed  CAS  Google Scholar 

  • Malmberg KJ, Ljunggren HG.: Escape from immune- and no immune-mediated tumor surveillance. Semin Cancer Biol. 2006 Feb; 16(1):16–31.

    PubMed  CAS  Google Scholar 

  • Ménard C, Martin F, Apetoh L et al.: Cancer chemotherapy: not only a direct cytotoxic effect, but also an adjuvant for antitumor immunity. Cancer Immunol Immunother. 2008 Nov; 57(11):1579–87.

    PubMed  Google Scholar 

  • Morse MA, Hobeika AC, Osada T et al.: Depletion of human regulatory T cells specifically enhances antigen specific immune responses to cancer vaccines. Blood. 2008 Jun 2. [Epub ahead of print].

    Google Scholar 

  • Motoyoshi Y, Kaminoda K, Saitoh O et al.: Different mechanisms for anti-tumor effects of low- and high – dose cyclophospamide. Oncol Rep. 2006; 16:141–6.

    PubMed  CAS  Google Scholar 

  • Mottet C, Golshayan D.: CD4+CD25+Foxp3+ regulatory T cells: from basic research to potential therapeutic use. Swiss Med Wkly. 2007 Nov 17; 137(45–46):625–34.

    PubMed  CAS  Google Scholar 

  • Movahedi K, Guilliams M, Van den Bossche J et al.: Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008 Apr 15; 111(8):4233–44.

    PubMed  CAS  Google Scholar 

  • Mozaffari F, Lindemalm C, Choudhury A et al.: Systemic immune effects of adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide and/or radiotherapy in breast cancer: a longitudinal study. Cancer Immunol Immunother. 2009 Jan; 58(1):111–20.

    PubMed  CAS  Google Scholar 

  • Muller AJ, Prendergast GC.: Indoleamine 2,3-dioxygenase in immune suppression and cancer. Curr Cancer Drug Targets. 2007 Feb; 7(1):31–40.

    PubMed  CAS  Google Scholar 

  • Munn DH, Sharma MD, Lee JR et al.: Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science. 2002 Sep 13; 297(5588): 1867–70.

    PubMed  CAS  Google Scholar 

  • Murdoch C, Muthana M, Lewis CE.: Hypoxia regulates macrophage functions in inflammation. J Immunol. 2005 Nov 15; 175(10):6257–63.

    PubMed  CAS  Google Scholar 

  • Narravula S, Colgan SP.: Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia. J Immunol. 2001 Jun 15; 166(12):7543–8.

    PubMed  CAS  Google Scholar 

  • Ng SS, Figg WD.: Upregulation of endogenous angiogenesis inhibitors: a mechanism of action of metronomic chemotherapy. Cancer Biol Ther. 2004 Dec; 3(12):1212–3.

    PubMed  Google Scholar 

  • Nishimura T, Iwakabe K, Sekimoto M et al.: Distinct role of Antigen specific T Helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J exp Med. 1999; 190: 617–27.

    PubMed  CAS  Google Scholar 

  • Ochoa AC, Zea AH, Hernandez C et al.: Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007 Jan 15; 13(2 Pt 2):721s–726s.

    PubMed  CAS  Google Scholar 

  • Ochsenbein AF.: Principles of tumor immunosurveillance and implications for immunotherapy. Cancer Gene Ther. 2002 Dec; 9(12):1043–55.

    PubMed  CAS  Google Scholar 

  • Ohm JE, Carbone DP.: VEGF as a mediator of tumor-associated immunodeficiency. Immunologic Research. 2001; 23:263–72.

    PubMed  CAS  Google Scholar 

  • Ohm JE, Shurin MR, Esche C et al.: Effect of vascular endothelial growth factor and FLT3 ligand on dendritic cell generation in vivo. J Immunol. 1999 Sep 15; 163(6):3260–8.

    PubMed  CAS  Google Scholar 

  • Oyama T, Ran S, Ishida T et al.: Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol. 1998 Feb 1; 160(3):1224–32.

    PubMed  CAS  Google Scholar 

  • Park S, Cheon S, Cho D.: The dual effects of interleukin-18 in tumor progression. Cell Mol Immunol. 2007 Oct; 4(5):329–35.

    PubMed  CAS  Google Scholar 

  • Park SY, Lee h, Hur j, et al.: Hypoxia induces nitric oxide production in mouse microglia via p 38 mitogen-activated protein kinase pathway. Brain Res Mol Brain Res. 2002; 107:9–16.

    PubMed  CAS  Google Scholar 

  • Pollard JW.: Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004 Jan; 4(1):71–8.

    PubMed  CAS  Google Scholar 

  • Popov A, Schultze JL.: IDO-expressing regulatory dendritic cells in cancer and chronic infection. J Mol Med. 2008 Feb; 86(2):145–60.

    PubMed  CAS  Google Scholar 

  • Prendergast GC and Jaffee EM.: Cancer immunologists and cancer biologists: why we didn,t talk then but need to now. Cancer Res. 2007; 67:3500–4.

    PubMed  CAS  Google Scholar 

  • Raman D, Baugher PJ, Thu YM et al.: Role of chemokines in tumor growth. Cancer Lett. 2007 Oct 28; 256(2):137–65.

    PubMed  CAS  Google Scholar 

  • Rius J, Guma M, Schachtrup C et al.: NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008 Jun 5; 453(7196):807–11.

    PubMed  CAS  Google Scholar 

  • Rovere- Querini P, Castiglioni A.: Adjuvant role for cell death during chemo-and radiotherapy of cancer?. Expert Rev. Clin Immunol. 2008; 41:1–6.

    Google Scholar 

  • Rüegg C.: Leukocytes, inflammation, and angiogenesis in cancer: fatal attractions. J Leukoc Biol. 2006 Oct; 80(4):682–4.

    PubMed  Google Scholar 

  • Salazar-Onfray F, López MN, Mendoza-Naranjo A.: Paradoxical effects of cytokines in tumor immune surveillance and tumor immune escape. Cytokine Growth Factor Rev. 2007 Feb–Apr; 18(1–2):171–82.

    PubMed  CAS  Google Scholar 

  • Scheler M, Wenzel J, Tüting T et al.: Indoleamine 2,3-dioxygenase (IDO): the antagonist of type I interferon-driven skin inflammation? Am J Pathol. 2007 Dec; 171(6):1936–43.

    PubMed  CAS  Google Scholar 

  • Schmitt E, Gehrmann M, Brunet M et al.: Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol. 2007 Jan; 81(1):15–27.

    PubMed  CAS  Google Scholar 

  • Schmid MD, Varner JA.: Myeloid cell trafficking and tumor angiogenesis. Cancer Let. 2007; 250:1–8.

    CAS  Google Scholar 

  • Schumacker PT.: Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell. 2006 Sep; 10(3):175–6.

    PubMed  CAS  Google Scholar 

  • Seo N, Hayakawa S, Takigawa M et al.: Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4(+) T-regulatory cells and systemic collapse of antitumour immunity. Immunology. 2001 Aug; 103(4):449–57.

    PubMed  CAS  Google Scholar 

  • Sharp HJ, Wansley EK, Garnet CT et al.: Synergistic antitumor activity of immune strategies combined with radiation. Front Biosci. 2007; 12:4900–10.

    PubMed  CAS  Google Scholar 

  • Shi YH, Fang WG.: Hypoxia-inducible factor-1 in tumour angiogenesis. World J Gastroenterol. 2004 Apr 15; 10(8):1082–7.

    PubMed  CAS  Google Scholar 

  • Shubina IZ, Velizheva N and Kiselevsky MV.: CD4+/CD25+ T – Regulatory Cells. In Atlas Effectors of Anti-Tumor Immunity Kiselevsky, Mikhail V. (Ed.), 2008, Springer Science+Business Media.

    Google Scholar 

  • Sica A, Allavena P, Mantovani A.: Cancer related inflammation: The macrophage connection. Cancer Lett. 2008 Apr 28; 264:299–310.

    Google Scholar 

  • Sica A, Bronte V.: Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007 May; 117(5):1155–66.

    PubMed  CAS  Google Scholar 

  • Silzle T, Randolph GJ, Kreutz M et al.: The fibroblast: sentinel cell and local immune modulator in tumor tissue. Int J Cancer. 2004 Jan 10; 108(2):173–80.

    PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, Bunt SK et al.: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 2007 Jul 15; 179(2):977–83.

    PubMed  CAS  Google Scholar 

  • Sodhi A, Basu S.: Role of human blood monocytes in up-regulation of lymphokine (interleukin-2)-activated killer cell activity with cisplatin and FK-565. Nat Immun. 1992 Mar–Apr; 11(2): 105–16.

    PubMed  CAS  Google Scholar 

  • Sitkovsky M, Lukashev D.: Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol. 2005 Sep; 5(9):712–21.

    PubMed  CAS  Google Scholar 

  • Stephens HA.: MICA and MICB genes: can the enigma of their polymorphism be resolved? Trends Immunol. 2001 Jul; 22(7):378–85.

    PubMed  CAS  Google Scholar 

  • Stewart TJ, Greeneltch KM, Lutsiak ME et al.: Immunological responses can have both pro- and antitumour effects: implications for immunotherapy. Expert Rev Mol Med. 2007 Feb 7; 9(4):1–20.

    PubMed  Google Scholar 

  • Suzuki E, Kapoor V, Jassar AS et al.: Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res. 2005 Sep 15; 11(18):6713–21.

    PubMed  CAS  Google Scholar 

  • Swann JB, Smyth MJ.: Immune surveillance of tumors. J Clin Invest. 2007 May; 117(5):1137–46.

    PubMed  CAS  Google Scholar 

  • Szatrowski TP, Nathan CF.: Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991 Feb 1; 51(3):794–8.

    PubMed  CAS  Google Scholar 

  • Tachibana K, Yamasaki D, Ishimoto K et al.: The Role of PPARs in Cancer. PPAR Res. 2008; 2008:102737.

    Google Scholar 

  • Taylor CT.: Interdependent roles for hypoxia inducible factor and nuclear factor-kappa B in hypoxic inflammation. J Physiol. 2008 Sep 1; 586(Pt. 17):4055–9.

    PubMed  CAS  Google Scholar 

  • Tesniere A, Panaretakis T, Kepp O et al.: Molecular characteristics of immunogenic cancer cell death. Cell Death Differ. 2008 Jan; 15(1):3–12.

    PubMed  CAS  Google Scholar 

  • Thiel M, Chouker A, Ohta A et al.: Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Med. 2005 Jun; 2(6):e130.

    Google Scholar 

  • Thomas GR, Chen Z, Leukinova E, et al.: Cytokines IL-1 alpha, IL-6, and GM-CSF constitutively secreted by oral squamous carcinoma induce down-regulation of CD80 costimulatory molecule expression: restoration by interferon gamma. Cancer Immunol. Immunother. 2004 Jan; 53(1):33–40.

    PubMed  CAS  Google Scholar 

  • Titu LV, Monson JRT, Greenman J.: The role of CD8+ T cells in immune responses to colorectal cancer. Cancer Immunol Immunother. 2002; 51:235–47.

    PubMed  CAS  Google Scholar 

  • Tsan MF, Gao B.: Heat shock protein and innate immunity. Cell Mol Immunol. 2004 Aug; 1(4):274–9.

    PubMed  CAS  Google Scholar 

  • Tsuda H, Kitahashi S, Umesaki N et al.: Abrogation of suppressor cells activity by cis-diamminedichloroplatinum (CDDP) treatment using therapeutic doses in ovarian cancer patients. Gynecol Oncol. 1994 Feb; 52(2):218–21.

    PubMed  CAS  Google Scholar 

  • Ullrich E, Bonmort M, Mignot G et al.: Tumor stress, cell death and the ensuing immune response. Cell Death and Differentiation. 2008a; 15:21–8.

    Google Scholar 

  • Ullrich E, Ménard C, Flament C et al.: Dendritic cells and innate defense against tumor cells. Cytokine Growth Factor Rev. 2008b Feb; 19(1):79–92.

    Google Scholar 

  • Van Ginderachter JA et al.: Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood 2006; 108:525–35.

    PubMed  Google Scholar 

  • Van der Most RG, Currie A, Robinson BWS et al.: Cranking the immunologic engine with chemotherapy. Using context to drive tumor antigen cross-presentation towards useful antitumor immunity. Cancer Res. 2006; 66:601–4.

    PubMed  Google Scholar 

  • van der Most RG, Nowak AK, Lake RA.: Immune stimulatory features of classical chemotherapy. In “Cancer Immunology: Immune Suppression and growth”. Prendergast GC editor. 2007 Academic Press, pp. 235–55.

    Google Scholar 

  • Van der Most RG, Robinson BWS, Lake R.: Combining immunotherapy with chemotherapy to treat cancer. Discovery Medicine. 2005; 5:265–70.

    Google Scholar 

  • Vaupel P, Harrison L.: Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist. 2004; 9 Suppl 5:4–9.

    PubMed  Google Scholar 

  • Villella JA, Odunsi K, Lele S.: The role of IDo in immune system evasion of malignancy: another piece of the tolerance puzzle. Cancer Therapy. 2006; 4:27–34.

    Google Scholar 

  • von Bergwelt-Baildon MS, Popov A, Saric T et al.: CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood. 2006 Jul 1; 108(1):228–37.

    Google Scholar 

  • Wang D, Dubois RN.: Prostaglandins and cancer. Gut 2006; 55:115–22.

    PubMed  CAS  Google Scholar 

  • Wang E, Panelli MC, Monsurró V et al.: A global approach to tumor immunology. Cell Mol Immunol. 2004 Aug; 1(4):256–65.

    PubMed  CAS  Google Scholar 

  • Woodruff MFA.: The interaction of cancer and host. Its therapeutic significance. Grune & Stratton Publishers, 1980. New York, London, Toronto, Sidney, San Francisco.

    Google Scholar 

  • Wu T-C.: The role of vascular adhesion molecule-1 in tumor immune evasion. Cancer Res. 2007; 67:6003–6.

    PubMed  CAS  Google Scholar 

  • Yamaji H, Iizasa T, Koh E, Suzuki M et al.: Correlation between interleukin 6 production and tumor proliferation in non-small cell lung cancer. Cancer Immunol Immunother. 2004 Sep; 53(9):786–92.

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Gaynor RB.: Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001 Jan; 107(2):135–42.

    PubMed  CAS  Google Scholar 

  • Yang AS, Lattime EC.: Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res. 2003 May 1; 63(9):2150–7.

    PubMed  CAS  Google Scholar 

  • Yu H, Kortylewski M, Pardoll D.: Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007 Jan; 7(1):41–51.

    PubMed  CAS  Google Scholar 

  • Yuan A, Chen JJ, Yang PC.: Pathophysiology of tumor-associated macrophages. Adv Clin Chem. 2008; 45:199–223.

    PubMed  CAS  Google Scholar 

  • Zarember KA, Malech HL.: HIF-1alpha: a master regulator of innate host defenses? J Clin Invest. 2005 Jul; 115(7):1702–4.

    PubMed  CAS  Google Scholar 

  • Zea AH, Rodriguez PC, Atkins MB et al.: Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 2005 Apr 15; 65(8):3044–8.

    PubMed  CAS  Google Scholar 

  • Zhang HL, Zhang Z, Xu YJ.: Hypoxia-inducible factor-1α increased the expression of peroxisome proliferator activated receptor α in lung cancer cell A 549. Chinese Med J 2003; 16:145–7.

    Google Scholar 

  • Zitvogel L, Tesniere A, Kroemer G.: Cancer despite immunosurvelliance: immunoselection and immunosubversion. Nature Rev Immunol 2006; 6:715–27.

    CAS  Google Scholar 

  • Zou W, Machelon V, Coulomb-L’Hermin A, Borvak J et al.: Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med. 2001 Dec; 7(12):1339–46.

    PubMed  CAS  Google Scholar 

  • Zuckerberg AL, Goldberg LI, Lederman HM.: Effects of hypoxia on interleukin-2 mRNA expression by T lymphocytes. Crit Care Med. 1994 Feb; 22(2):197–203.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Baronzio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baronzio, G. et al. (2009). Effects of Tumor Microenvironment on Immunity and Consequent Clinical Considerations. In: Baronzio, G., Fiorentini, G., Cogle, C.R. (eds) Cancer Microenvironment and Therapeutic Implications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9576-4_9

Download citation

Publish with us

Policies and ethics