Skip to main content

Challenging the Genetic Complexity of Schizophrenia by Use of Intermediate Phenotypes

  • Chapter
The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes

Abstract

Schizophrenia is a complex disorder, whose phenotypic variation and likely extensive genetic heterogeneity is not adequately captured by current clinical classifications. Despite a century of research, the field abounds in inconsistent empirical findings and conceptual controversies. How far can genetics take us in understanding its causes and what is the role of the environment? Is the disorder rooted in neurodevelop-ment or in neurodegeneration? Can we bridge the gap between the objective measurement of brain function and the subjective phenomenology of schizophrenia? These, and other unresolved fundamental issues, lead to questions about the status of schizophrenia as a putative disease entity and to attempts at its “decon-struction” by using intermediate (endo-) phenotypes. Endophenotypes are objectively measurable, biologically anchored heritable traits, which co-segregate with clinical illness in pedigrees and may also be expressed in clinically unaffected family members. This chapter reviews the phenotypic variation and likely etiological heterogeneity underlying the clinical phenotype of schizophrenia; outlines the conceptual foundation and criteria for the application of endophe-notype research strategies; and provides an overview of promising endophenotype-based approaches including measures of cognition, electrophysiological brain responses, and brain imaging techniques. The design and findings of the Western Australian Family Study of Schizophrenia provide an illustrative example of the application of an endophenotype approach to parsing the complexity of the disorder with a view to facilitating its genetic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry 2003;160:636–645

    Article  PubMed  Google Scholar 

  2. Almasy L, Blangero J. (2001) Endophenotypes as quantitative risk factors for psychiatric disease: rationale and study design. American Journal of Medical Genetics (Neuropsychiatric Genetics) 2001;105:42–44

    Article  CAS  Google Scholar 

  3. Sturtevant AH. A History of Genetics. Cold Spring Harbor Laboratory Press 2001/Electronic Scholarly Publishing Project (www.esp.org/books/sturt/history/readbook.html)

  4. Gottesman II, Shields J. Genetic theorizing and schizophrenia. British Journal of Psychiatry 1973;122:15–30

    Article  PubMed  CAS  Google Scholar 

  5. Braff DL, Greenwood TA, Swerdlow NR, et al. Advances in endophenotyping schizophrenia. World Psychiatry 2008; 7:11–18

    PubMed  Google Scholar 

  6. Sullivan PF. The genetics of schizophrenia. PLoS Medicine 2005;2:614–618

    Article  CAS  Google Scholar 

  7. Doyle AE, Faraone SV, Seidman LJ, et al. Are endopheno-types based on measures of executive function useful for molecular genetic studies of ADHD? Journal of Child Psychology and Psychiatry 2005;46:774–803

    Article  PubMed  Google Scholar 

  8. Cannon TD, Keller MC. Endophenotypes in the genetic analysis of mental disorders. Annual Review of Clinical Psychology 2006;2:267–290.

    Article  PubMed  Google Scholar 

  9. Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nature Reviews Genetics 2008;9:341–355

    Article  PubMed  CAS  Google Scholar 

  10. Jablensky A. Epidemiology of schizophrenia: the global burden of disease and disability. European Archive of Psychiatry and Clinical Neuroscience 2000;250:274–285

    Article  CAS  Google Scholar 

  11. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genetics 2003;33, Suppl:228–237

    Article  PubMed  CAS  Google Scholar 

  12. Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Molecular Psychiatry 2005;10:40–68

    Article  PubMed  CAS  Google Scholar 

  13. c

    Article  PubMed  CAS  Google Scholar 

  14. Kendell R, Jablensky A. Distinguishing between the validity and utility of psychiatric diagnoses. American Journal of Psychiatry 2003;160:4–12

    Article  PubMed  Google Scholar 

  15. Bleuler E. Lehrbuch der Psychiatrie. Springer: Berlin; 1920 [reprinted English translation: Textbook of psychiatry. Arno: New York; 1976]

    Google Scholar 

  16. Gur RE, Calkins MN, Gur RC, et al. The Consortium on the Genetics of Schizophrenia: neurocognitive endophenotypes. Schizophrenia Bulletin 2007;33:49–68

    Article  PubMed  Google Scholar 

  17. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006;368:1795–1809

    Article  PubMed  CAS  Google Scholar 

  18. Gaulton KJ, Willer CJ, Li Y, et al. Comprehensive association study of Type 2 diabetes and related quantitative traits with 222 candidate genes. Diabetes 2008 (PMID: 18678618)

    Google Scholar 

  19. Pharoah PD, Antoniou AC, Easton DF, et al. Polygenes, risk prediction, and targeted prevention of breast cancer. New England Journal of Medicine 2008;358:2760–2763

    Article  Google Scholar 

  20. Matthysse S, Holzman PS, Gusella JF, et al. Linkage of eye movement dysfunction to chromosome 6p in schizophrenia: additional evidence. American Journal of Medical Genetics (Neuropsychiatric Genetics) 2004;128B:30–36

    Article  Google Scholar 

  21. Holzman PS. Genetic latent structure models: implications for research on schizophrenia. Psychological Medicine 1987;17:271–274

    Article  PubMed  Google Scholar 

  22. Holzman PS. The role of psychological probes in genetic studies of schizophrenia. Schizophrenia Research 1994;13:1–9

    Article  PubMed  CAS  Google Scholar 

  23. Kaplan S, Herkovitz S, Shapiro E. A universal mechanism ties genotype to phenotype in trinucleotide diseases. PLoS Computational Biology 2007;3:e235 (PMCID: PMC2082501)

    Article  PubMed  CAS  Google Scholar 

  24. Cromwell RL, Elkins IJ, McCarthy ME, O'Neil TS. Searching for the phenotypes of schizophrenia. Acta Psychiatrica Scandinavica 1994;90 (Suppl 384):34–39

    Article  Google Scholar 

  25. Meehl PE. Toward an integrated theory of schizotaxia, schizotypy, and schizophrenia. Journal of Personality Disorders 1990;4:1–99

    Google Scholar 

  26. Bearden CE, Freimer NB. Endophenotypes for psychiatric disorders: ready for primetime? Trends in Genetics 2006;22:306–313

    Article  PubMed  CAS  Google Scholar 

  27. Leboyer M, Belliver F, NostenBertrand, et al. Psychiatric genetics: search for phenotypes. Trends in Neurosciences 1998;21:102–105

    Article  PubMed  CAS  Google Scholar 

  28. Snitz BE, MacDonald AW, Carter CS. Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analysis review of putative endophenotypes. Schizophrenia Bulletin 2006;32:179–194

    Article  PubMed  Google Scholar 

  29. Turetsky BI, Calkins ME, Light G, et al. Neurophysiological endophenotypes in schizophrenia: the viability of selected candidate measures. Schizophrenia Bulletin 2007;33:69–94

    Article  PubMed  Google Scholar 

  30. Flint J, Munafo MR. The endophenotype in psychiatric genetics. Psychological Medicine 2007;37:163–180

    Article  PubMed  Google Scholar 

  31. Skuse DH. Endophenotypes and child psychiatry. British Journal of Psychiatry 2001;178:395–396

    Article  PubMed  CAS  Google Scholar 

  32. Owen MJ, Craddock N, Jablensky A. The genetic decon-struction of psychosis. Schizophrenia Bulletin 2007;33: 905–911

    Article  PubMed  Google Scholar 

  33. Kraepelin E. Psychiatrie. 8 Auflage. Barth:Leipzig 1909 [reprinted English translation: Dementia praecox and para-phrenia. Krieger: Huntington, New York; 1971]

    Google Scholar 

  34. Heinrichs RW. Meta-analysis and the science of schizophrenia: variant evidence or evidence of variants? Neuroscience and Biobehavioral Reviews 2004;28:379–394

    Article  PubMed  Google Scholar 

  35. Davidson M, Reichenberg A, Rabinowitz J, et al. Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. American Journal of Psychiatry 1999;156:1328–1335

    PubMed  CAS  Google Scholar 

  36. Zammit S, Allebeck P, David AS, et al. A longitudinal study of premorbid IQ scores and risk of developing schizophrenia, bipolar disorder, severe depression, and other nonaffective psychoses. Archives of General Psychiatry 2004;61:354–360

    Article  PubMed  Google Scholar 

  37. Heinrichs RW, Zakzanis KK (1998) Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 1998;12:426–445

    Article  PubMed  CAS  Google Scholar 

  38. Joyce EM, Rosier JP (2007) Cognitive heterogeneity in schizophrenia. Current Opinion in Psychiatry 2007;20:268–272

    PubMed  Google Scholar 

  39. Cirillo MA, Seidman LJ. Verbal declarative memory dysfunction in schizophrenia: from clinical assessment to genetics and brain mechanisms. Neuropsychology Review 2003;13:43–77

    Article  PubMed  Google Scholar 

  40. Paulsen JS, Heaton RK, Sadek JR, et al. The nature of learning and memory impairments in schizophrenia. Journal of the International Neuropsychological Society 1995;1:88–99

    Article  PubMed  CAS  Google Scholar 

  41. Turetsky BI, Moberg PJ, Mozley LH, et al. Memory-delineated subtypes of schizophrenia: relationship to clinical, neuroanatonical, and neurophysiological measures. Neuro-psychology 2002;16:481–490

    Google Scholar 

  42. Dickinson D, Iannone VN, Wilk CM, et al. General and specific cognitive deficits in schizophrenia. Biological Psychiatry 2004;55:826–833

    Article  PubMed  Google Scholar 

  43. Egan MF, Goldberg TE, Kolachana BS, et al. Effect of COMT val108/158met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences 2001;98:6917–6922

    Article  CAS  Google Scholar 

  44. Bilder RM, Volavka J, Csobor P, et al. Neurocognitive correlates of the COMT val158met polymorphism in chronic schizophrenia. Biological Psychiatry 2002;52:701–707

    Article  PubMed  CAS  Google Scholar 

  45. Paunio T, Tuulio-Henriksson A, Hiekkalinna T, et al. Search for cognitive trait components of schizophrenia reveals a locus for verbal learning and memory on 4q and for visual working memory on 2q. Human Molecular Genetics 2004;13:1693–1702

    Article  PubMed  CAS  Google Scholar 

  46. Hallmayer JF, Kalaydjieva L, Badcock J, et al. Genetic evidence for a distinct subtype of schizophrenia characterized by pervasive cognitive deficit. American Journal of Human Genetics 2005;77:468–476

    Article  PubMed  CAS  Google Scholar 

  47. Dickinson D, Gold JM (2008) Less unique variance than meets the eye: overlap among traditional neuropsychologi-cal dimensions in schizophrenia. Schizophrenia Bulletin 2008 [PMID:17986678]

    Google Scholar 

  48. Martin LF, Hall M-H, Ross RG, et al. Physiology and schizophrenia, bipolar disorder, and schizoaffective disorder. American Journal of Psychiatry 2007;164:1900–1906

    Article  PubMed  Google Scholar 

  49. Young DA, Waldo M, Ruttledge JH, et al. Heritability of inhibitory gating of the P50 auditory evoked potential in monozygotic and dizygotic twins. Neuropsychobiology 2001;33:113–117

    Article  Google Scholar 

  50. Leonard S, Freedman R. Genetics of chromosome 15q13q14 in schizophrenia. Biological Psychiatry 2006;15:115–122

    Article  CAS  Google Scholar 

  51. Greenwood TA, Braff DL, Light GA, et al. Initial heritability analyses of endophenotypic measures for schizophrenia. The Consortium on the Genetics of Schizophrenia. Archives of General Psychiatry 2007;64:1242–1250

    Article  PubMed  Google Scholar 

  52. Grunwald T, Butros NN, Pezer N, et al. Neuronal substrates of sensory gating within the human brain. Biological Psychiatry 2003;53:511–519

    Article  PubMed  Google Scholar 

  53. Cadenhead KS, Swerdlow NR, Shafer KM, et al. Modulation of the startle response and startle laterality in relatives of schizophrenic patients and in subjects with schizotypal personality disorder: evidence of inhibitory deficit. American Journal of Psychiatry 2000;157:1660–1668

    Article  PubMed  CAS  Google Scholar 

  54. Swerdlow NR, Sprock J, Light GA, et al. Multi-site studies of acoustic startle and prepulse inhibition in humans: initial experience and methodological considerations based on studies by the Consortium on the Genetics of Schizophrenia. Schizophrenia Research 2007;92:237–251

    Article  PubMed  Google Scholar 

  55. Anokhin AP, Heath AC, Myers E, et al. Genetic influences on prepulse inhibition of startle reflex in humans. Neuroscience Letters 2003;353:45–48

    Article  PubMed  CAS  Google Scholar 

  56. Swerdlow NR, Paulsen J, Braff DL, et al. Impaired prepulse inhibition of acoustic and tactile startle in patients with Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry 1995;58:192–200.

    Article  CAS  Google Scholar 

  57. Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 2001;156:234–258

    Article  PubMed  CAS  Google Scholar 

  58. Castellanos FX, Fine EJ, Kaysen D, et al. Sensorimotor gating in boys with Tourette's syndrome and ADHD: preliminary results. Biological Psychiatry 1996;39:33–41

    Article  PubMed  CAS  Google Scholar 

  59. Sobin C, Kiley-Brabeck K, Karayiorgou M. Lower prepulse inhibition in children with the 22q11 deletion syndrome. American Journal of Psychiatry 2005;162:1090–1099

    Article  PubMed  Google Scholar 

  60. Todd J, Michie PT, Schall U, et al. Deviant matters: duration, frequency, and intensity deviants reveal different patterns of mismatch negativity reduction in early and late schizophrenia. Biological Psychiatry 2008;63:58–64

    Article  PubMed  Google Scholar 

  61. Näätanen R, Jacobsen T, Winkler I. Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Psychophysiology 2005;42:25–32

    Article  PubMed  Google Scholar 

  62. Catts SV, Shelley AM, Ward PB, et al. Brain potential evidence for an auditory sensory memory deficit in schizophrenia. American Journal of Psychiatry 1995;152:213–219

    PubMed  CAS  Google Scholar 

  63. Michie PT, Innes-Brown H, Todd J, Jablensky AV. Duration mismatch negativity in biological relatives of patients with schizophrenia spectrum disorders. Biological Psychiatry 2002;52:749–758

    Article  PubMed  Google Scholar 

  64. Hall MH, Schulze K, Rijsdijk F, et al. Heritability and reliability of P300, P50 and duration mismatch negativity. Behavioral Genetics 2006;36:845–857

    Article  Google Scholar 

  65. Ahveninen J, Jääskeläinen IP, Osipova D. Inhertied auditory-cortical dysfunction in twin pairs discordant for schizophrenia. Biological Psychiatry 2006;60:612–620

    Article  PubMed  Google Scholar 

  66. Umbricht D, Krljes S. Mismatch negativity in schizophrenia: a meta- analysis. Schizophrenia Research 2005;76:1–23

    Article  PubMed  Google Scholar 

  67. Baker K, Baldeweg T, Sivagnanasundaram S, et al. COMT val108/158 Met modifies mismatch negativity and cognitive function in 22q11 deletion syndrome. Biological Psychiatry 2005;58:23–31

    Article  PubMed  CAS  Google Scholar 

  68. Linden DE. The P300: where in the brain is it produced and what does it tell us? Neuroscientist 2005;11:563–576

    Article  PubMed  CAS  Google Scholar 

  69. Hegerl U, Juckel G, Müller-Schubert A, et al. Schizophrenics with small P300: a subgroup with a neurodevelopmental disturbance and a high risk for tardive dyskinesia? Acta Psychiatrica Scandinavica 1995;91:120–125

    Article  PubMed  CAS  Google Scholar 

  70. Jeon YW, Pollich J. Meta-analysis of P300 and schizophrenia: patients, paradigms, and practical implications. Psycho-physiology 2003;40:684–701

    Google Scholar 

  71. McCarley RW, Salisbury DF, Hirayasu Y, et al. Association between smaller left posterior superior temporal gyrus volume on magnetic resonance imaging and smaller P300 amplitude in first-episode schizophrenia. Archives of General Psychiatry 2002;59:321–331

    Article  PubMed  Google Scholar 

  72. Wright MJ, Hansell NK, Geffen GM, et al. Genetic influence on the variance in P3 amplitude and latency. Behavioral Genetics 2001;31:555–565

    Article  CAS  Google Scholar 

  73. Porjesz B, Begleiter H, Wang K, et al. Linkage and linkage disequilibrium mapping of ERP and EEG phenotypes. Biological Psychology 2002;61:229–248

    Article  PubMed  Google Scholar 

  74. Blackwood DH, Fordyce A, Walker MT, et al. Schizophrenia and affective disorders – cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. American Journal of Human Genetics 2001;69:428–433

    Article  PubMed  CAS  Google Scholar 

  75. Curtis CE, Calkins ME, Iacono WG. Saccadic disinhibition in schizophrenia patients and their first-degree biological relatives A parametric study of the effects of increasing inhibitory load. Experimental Brain Research 2001;137: 228–236

    Article  CAS  Google Scholar 

  76. Clementz BA, McDowell JE, Zisook S. Saccadic system functioning among schizophrenia patients and their first-degree biological relatives. Journal of Abnormal Psychology 1994;103:277–287

    Article  PubMed  CAS  Google Scholar 

  77. Brownstein J, Krastoshevsky O, McCollum C, et al. Antisaccade performance is abnormal in schizophrenia patients but not in their biological relatives. Schizophrenia Research 2003;63:13–25

    Article  PubMed  Google Scholar 

  78. Malone SM, Iacono WG. Error rate on the antisaccade task: heritability and developmental change in performance among preadolescent and late-adolescent female twin youth. Psychophysiology 2002;39:664–673

    Article  PubMed  Google Scholar 

  79. Levy DL, O'Driscoll G, Matthyse S, et al. Antisaccade performance in biological relatives of schizophrenia patients: a meta-analysis. Schizophrenia Research 2004;71:113–125

    Article  PubMed  Google Scholar 

  80. Calkins ME, Curtis CE, Iacono WG, et al. Antisaccade performance is impaired in medically and psychiatrically healthy biological relatives of schizophrenia patients. Schizophrenia Research 2004;71:167–178 inconsistent data on relatives

    Article  PubMed  Google Scholar 

  81. Myles-Worsley M, Coon H, McDowell, et al. Linkage of a composite inhibitory phenotype to a chromosome 22q locus in eight Utah families. American Journal of Medical Genetics 1999;88:544–550

    Article  PubMed  CAS  Google Scholar 

  82. Meyer Lindenberg A, Weinberger DR. Intermediate pheno-types and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience 2006;7:818–827

    Article  PubMed  CAS  Google Scholar 

  83. Gur RE, Keshavan MS, Lawries SM. Deconstructing psychosis with human brain imaging. Schizophrenia Bulletin 2007;33:921–931

    Article  PubMed  Google Scholar 

  84. Davatzikos C, Shen D, Gur RC, et al. Whole-brain morpho-metric study of schizophrenia revealing a spatially complex set of focal abnormalities. Archives of General Psychiatry 2005;62:1218–1227

    Article  PubMed  Google Scholar 

  85. Davidson LL, Heinrichs RW. Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: a meta-analysis. Psychiatry Research Neuroimaging 2003;122:69–87

    Article  Google Scholar 

  86. Glahn DC, Thompson PM, Blangero J (2007) Neuroimaging endophenotypes: Strategies for finding genes influencing brain structure and function. Human Brain Mapping 2007;28: 488–501

    Article  PubMed  Google Scholar 

  87. Bearden CE, van Erp TGM, Thompson PM, et al. Cortical mapping of genotype-phenotype relationships in schizophrenia. Human Brain Mapping 2007;28:519–532

    Article  PubMed  Google Scholar 

  88. Jablensky A. Subtyping schizophrenia: implications for genetic research. Molecular Psychiatry 2006;11:815–836

    Article  PubMed  CAS  Google Scholar 

  89. Manton KG, Woodbury MA, Tolley DH. Statistical Applications Using Fuzzy Sets. Wiley, New York; 1994

    Google Scholar 

  90. Badcock JC, Badcock DR, Read C, et al. Examining encoding imprecision in spatial working memory in schizophrenia. Schizophrenia Research 2007;100:144–152

    Article  PubMed  Google Scholar 

  91. Price GW, Michie PT, Johnston J, et al. A multivariate elec-trophysiological endophenotype, from a unitary cohort, shows greater research utility than any single feature in the Western Australian Family Study of Schizophrenia. Biological Psychiatry 2006;60:1–10

    Article  PubMed  Google Scholar 

  92. Craddock N, Owen MJ. Rethinking psychosis: the disadvantages of a dichotomous classification now outweigh the advantages. World Psychiatry 2007;6:84–91

    PubMed  Google Scholar 

  93. Moldin SO. Indicators of liability to schizophrenia: perspectives from genetic epidemiology. Schizophrenia Bulletin 1994;20:169–184.

    PubMed  CAS  Google Scholar 

  94. Gerlai R. Phenomics: fiction or the future? Trends in Neuroscience 2002;10:506–509

    Article  Google Scholar 

  95. Tan H-Y, Callicott JH, Weinberger DR. Intermediate pheno-types in schizophrenia genetics redux: is it a no brainer? Molecular Psychiatry 2008;13:233–238

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jablensky, A. (2009). Challenging the Genetic Complexity of Schizophrenia by Use of Intermediate Phenotypes. In: Ritsner, M.S. (eds) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9464-4_3

Download citation

Publish with us

Policies and ethics