Skip to main content

Mechanistic Challenges and Engineering Applications of Protein Export in E. coli

  • Chapter

Abstract

Protein secretion and subcellular localization in E. coli has been under investigation for more than 60 years. While many details about the molecular mechanisms of these processes have been revealed, several facets of protein translocation still remain unclear. Bacteria secrete numerous proteins such as pathogenicity factors, toxins or degradative enzymes (Fernandez and Berenguer 2000). Six different secretion mechanisms for extruding proteins into the extracellular environment have been identified to-date. In Gram-negative bacteria such as E. coli, secretion into the extracellular medium requires crossing of two biological membranes, the inner and outer membranes of the cell. However, systems for protein translocation into the extracellular medium are generally highly protein-specific and with very few exceptions have not yet been engineered for the efficient export of recombinant proteins. More relevant from a technical and engineering standpoint, is the translocation of polypeptides from the cytoplasm into the periplasmic space, the main secretory compartment which is equivalent to the endoplasmic reticulum of eukaryotic cells.

In the first part of this chapter, we discuss export via the general Sec pathway and the Twin-Arginine Translocase (Tat) pathway. Compartmentalized molecular chaperones facilitate folding, impose a quality control step on the maturation of certain secreted proteins, especially those exported via Tat, and further facilitate the decision which protein export route should be chosen. The second part of this chapter focuses on the design of genetic screens or selections that capitalize on protein secretion to aid the screening of libraries of protein variants for molecular recognition or catalysis. We will briefly summarize the major E. coli-based display technologies and introduce new methodologies particularly those utilizing the Twin-Arginine Translocase pathway.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams TM, Wentzel A, Kolmar H (2005) Intimin-mediated export of passenger proteins requires maintenance of a translocation-competent conformation. J Bacteriol 187(2):522–33

    Article  PubMed  CAS  Google Scholar 

  • Alami M, Luke I, Deitermann S et al. (2003) Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol Cell 12(4):937–46

    Article  PubMed  CAS  Google Scholar 

  • Alder NN, Theg SM (2003) Energetics of protein transport across biological membranes. a study of the thylakoid DeltapH-dependent/cpTat pathway. Cell 112(2):231–42

    CAS  Google Scholar 

  • Arie JP, Sassoon N, Betton JM (2001) Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol Microbiol 39(1):199–210

    Article  PubMed  CAS  Google Scholar 

  • Bageshwar UK, Musser SM (2007) Two electrical potential dependent steps are required for transport by the Escherichia coli Tat machinery. J Cell Biol 179(1):87–99

    Article  PubMed  CAS  Google Scholar 

  • Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399–408

    Article  PubMed  CAS  Google Scholar 

  • Bange G, Wild K, Sinning I (2007) Protein translocation: checkpoint role for SRP GTPase activation. Curr Biol 17(22):R980–2

    Google Scholar 

  • Becker S, Michalczyk A, Wilhelm S et al. (2007) Ultrahigh-throughput screening to identify E. coli cells expressing functionally active enzymes on their surface. Chembiochem 8(8):943–9

    Article  PubMed  CAS  Google Scholar 

  • Becker S, Schmoldt HU, Adams TM et al. (2004) Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Curr Opin Biotechnol 15(4):323–9

    Article  PubMed  CAS  Google Scholar 

  • Berks BC (1996) A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22(3):393–404

    Article  PubMed  CAS  Google Scholar 

  • Berks BC, Palmer T, Sargent F (2003) The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 47:187–254

    Article  PubMed  CAS  Google Scholar 

  • Bessette PH, Aslund F, Beckwith J et al. (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 96(24):13703–8

    Article  PubMed  CAS  Google Scholar 

  • Blaudeck N, Kreutzenbeck P, Freudl R et al. (2003) Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane. J Bacteriol 185(9):2811–9

    Article  PubMed  CAS  Google Scholar 

  • Blaudeck N, Kreutzenbeck P, Muller M et al. (2005) Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient tat-dependent protein translocation in the absence of TatB. J Biol Chem 280(5):3426–32

    Article  PubMed  CAS  Google Scholar 

  • Blazek D, Celer V, Navratilova I et al. (2004) Generation and characterization of single-chain antibody fragments specific against transmembrane envelope glycoprotein gp46 of maedi-visna virus. J Virol Methods 115(1):83–92

    Article  PubMed  CAS  Google Scholar 

  • Bos MP, Robert V, Tommassen J (2007) Biogenesis of the gram-negative bacterial outer membrane. Annu Rev Microbiol 61:191–214

    Article  PubMed  CAS  Google Scholar 

  • Bothmann H, Pluckthun A (2000) The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J Biol Chem 275(22):17100–5

    Article  PubMed  CAS  Google Scholar 

  • Chan CS, Howell JM, Workentine ML et al. (2006) Twin-arginine translocase may have a role in the chaperone function of NarJ from Escherichia coli. Biochem Biophys Res Commun 343(1):244–51

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Hayhurst A, Thomas JG et al. (2001) Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS). Nat Biotechnol 19(6):537–42

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64(5):625–35

    Article  PubMed  CAS  Google Scholar 

  • Cline K, Ettinger WF, Theg SM (1992) Protein-specific energy requirements for protein transport across or into thylakoid membranes. Two lumenal proteins are transported in the absence of ATP. J Biol Chem 267(4):2688–96

    PubMed  CAS  Google Scholar 

  • Cline K, McCaffery M (2007) Evidence for a dynamic and transient pathway through the TAT protein transport machinery. Embo J 26(13):3039–49

    Article  PubMed  CAS  Google Scholar 

  • Daugherty PS (2007) Protein engineering with bacterial display. Curr Opin Struct Biol 17(4): 474–80

    Article  PubMed  CAS  Google Scholar 

  • de Marco A (2007) Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat Protoc 2(10):2632–9

    Article  PubMed  CAS  Google Scholar 

  • DeLisa MP, Lee P, Palmer T et al. (2004) Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway. J Bacteriol 186(2):366–73

    Article  PubMed  CAS  Google Scholar 

  • DeLisa MP, Tullman D, Georgiou G (2003) Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci USA 100(10):6115–20

    Article  PubMed  CAS  Google Scholar 

  • Dilks K, Gimenez MI, Pohlschroder M (2005) Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea. J Bacteriol 187(23):8104–13

    Article  PubMed  CAS  Google Scholar 

  • Dubini A, Sargent F (2003) Assembly of Tat-dependent [NiFe] hydrogenases: identification of precursor-binding accessory proteins. FEBS Lett 549(1–3):141–6

    Article  PubMed  CAS  Google Scholar 

  • Duong F, Wickner W (1997) The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. Embo J 16(16):4871–9

    Article  PubMed  CAS  Google Scholar 

  • Feilmeier BJ, Iseminger G, Schroeder D et al. (2000) Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol 182(14):4068–76

    Article  PubMed  CAS  Google Scholar 

  • Fekkes P, van der Does C, Driessen AJ (1997) The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. Embo J 16(20):6105–13

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Gacio A, Uguen M, Fastrez J (2003) Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol 21(9):408–14

    Article  PubMed  CAS  Google Scholar 

  • Fernandez LA, Berenguer J (2000) Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiol Rev 24(1):21–44

    Article  PubMed  CAS  Google Scholar 

  • Fisher AC, Kim J-Y, Perez-Rodriguez R et al. (2008) Exploration of twin-arginine translocation for the expression and purification of correctly folded proteins in Escherichia coli. Microbial Biotechnol 1(5):403–415.

    Article  CAS  Google Scholar 

  • Fisher AC, Kim W, DeLisa MP (2006) Genetic selection for protein solubility enabled by the folding quality control feature of the twin-arginine translocation pathway. Protein Sci 15(3):449–58

    Article  PubMed  CAS  Google Scholar 

  • Georgiou G, Segatori L (2005) Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr Opin Biotechnol 16(5):538–45

    Article  PubMed  CAS  Google Scholar 

  • Gerard F, Cline K (2006) Efficient twin arginine translocation (Tat) pathway transport of a precursor protein covalently anchored to its initial cpTatC binding site. J Biol Chem 281(10):6130–5

    Article  PubMed  CAS  Google Scholar 

  • Glucksman MJ, Bhattacharjee S, Makowski L (1992) Three-dimensional structure of a cloning vector. X-ray diffraction studies of filamentous bacteriophage M13 at 7 A resolution. J Mol Biol 226(2):455–70

    Article  PubMed  CAS  Google Scholar 

  • Gohlke U, Pullan L, McDevitt CA et al. (2005) The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci USA 102(30):10482–6

    Article  PubMed  CAS  Google Scholar 

  • Graubner W, Schierhorn A, Bruser T (2007) DnaK plays a pivotal role in Tat targeting of CueO and functions beside SlyD as a general Tat signal binding chaperone. J Biol Chem 282(10): 7116–24

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Lang BF, Burger G (2004) Mitochondria of protists. Annu Rev Genet 38:477–524

    Article  PubMed  CAS  Google Scholar 

  • Harvey BR, Georgiou G, Hayhurst A et al. (2004) Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc Natl Acad Sci USA 101(25):9193–8

    Article  PubMed  CAS  Google Scholar 

  • Hatzixanthis K, Clarke TA, Oubrie A et al. (2005) Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. Proc Natl Acad Sci USA 102(24):8460–5

    Article  PubMed  CAS  Google Scholar 

  • Hayhurst A, Happe S, Mabry R et al. (2003) Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis. J Immunol Methods 276(1–2):185–96

    Article  PubMed  CAS  Google Scholar 

  • Huber D, Boyd D, Xia Y et al. (2005a) Use of thioredoxin as a reporter to identify a subset of Escherichia coli signal sequences that promote signal recognition particle-dependent translocation. J Bacteriol 187(9):2983–91

    Article  PubMed  CAS  Google Scholar 

  • Huber D, Cha MI, Debarbieux L et al. (2005b) A selection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo. Proc Natl Acad Sci USA 102(52):18872–7

    Article  PubMed  CAS  Google Scholar 

  • Hwang BY, Varadarajan N, Li H et al. (2007) Substrate specificity of the Escherichia coli outer membrane protease OmpP. J Bacteriol 189(2):522–30

    Article  PubMed  CAS  Google Scholar 

  • Iwanczyk J, Damjanovic D, Kooistra J et al. (2007) Role of the PDZ domains in Escherichia coli DegP protein. J Bacteriol 189(8):3176–86

    Article  PubMed  CAS  Google Scholar 

  • Jack RL, Buchanan G, Dubini A et al. (2004) Coordinating assembly and export of complex bacterial proteins. Embo J 23(20):3962–72

    Article  PubMed  CAS  Google Scholar 

  • Jeong KJ, Seo MJ, Iverson BL et al. (2007) APEx 2-hybrid, a quantitative protein-protein interaction assay for antibody discovery and engineering. Proc Natl Acad Sci USA 104(20): 8247–52

    Article  PubMed  CAS  Google Scholar 

  • Joly JC, Leung WS, Swartz JR (1998) Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc Natl Acad Sci USA 95(6):2773–7

    Article  PubMed  CAS  Google Scholar 

  • Jose J, Betscheider D, Zangen D (2005) Bacterial surface display library screening by target enzyme labeling: Identification of new human cathepsin G inhibitors. Anal Biochem 346(2):258–67

    Article  PubMed  CAS  Google Scholar 

  • Ki JJ, Kawarasaki Y, Gam J et al. (2004) A periplasmic fluorescent reporter protein and its application in high-throughput membrane protein topology analysis. J Mol Biol 341(4):901–9

    Article  PubMed  CAS  Google Scholar 

  • Kiino DR, Silhavy TJ (1984) Mutation prlF1 relieves the lethality associated with export of beta-galactosidase hybrid proteins in Escherichia coli. J Bacteriol 158(3):878–83

    PubMed  CAS  Google Scholar 

  • Kim J, Rusch S, Luirink J et al. (2001) Is Ffh required for export of secretory proteins? FEBS Lett 505(2):245–8

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Malinverni JC, Sliz P et al. (2007) Structure and function of an essential component of the outer membrane protein assembly machine. Science 317(5840):961–4

    Article  PubMed  CAS  Google Scholar 

  • Kotz JD, Bond CJ, Cochran AG (2004) Phage-display as a tool for quantifying protein stability determinants. Eur J Biochem 271(9):1623–9

    Article  PubMed  CAS  Google Scholar 

  • Kreutzenbeck P, Kroger C, Lausberg F et al. (2007) Escherichia coli twin arginine (Tat) mutant translocases possessing relaxed signal peptide recognition specificities. J Biol Chem 282(11):7903–11

    Article  PubMed  CAS  Google Scholar 

  • Kumamoto CA (1991) Molecular chaperones and protein translocation across the Escherichia coli inner membrane. Mol Microbiol 5(1):19–22

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa Y, Yanagi H, Yura T (2000) Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl Environ Microbiol 66(9):3960–5

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa Y, Yanagi H, Yura T (2001) Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli. J Biol Chem 276(17):14393–9

    PubMed  CAS  Google Scholar 

  • Lawley TD, Klimke WA, Gubbins MJ et al. (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21(1):45–52

    Article  PubMed  CAS  Google Scholar 

  • Li HX, Hwang BY, Laxmikanthan G et al. (2008) Substrate specificity of human kallikreins 1 and 6 determined by phage display. Protein Sci 17(4):664–72

    Article  PubMed  CAS  Google Scholar 

  • Li SY, Chang BY, Lin SC (2006) Coexpression of TorD enhances the transport of GFP via the TAT pathway. J Biotechnol 122(4):412–21

    Article  PubMed  CAS  Google Scholar 

  • Lipovsek D, Pluckthun A (2004) In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 290(1–2):51–67

    Google Scholar 

  • Lu Z, Murray KS, Van Cleave V et al. (1995) Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein-protein interactions. Biotechnology (NY) 13(4):366–72

    Article  CAS  Google Scholar 

  • Luirink J, High S, Wood H et al. (1992) Signal-sequence recognition by an Escherichia coli ribonucleoprotein complex. Nature 359(6397):741–3

    Article  PubMed  CAS  Google Scholar 

  • Maillard J, Spronk CA, Buchanan G et al. (2007) Structural diversity in twin-arginine signal peptide-binding proteins. Proc Natl Acad Sci USA 104(40):15641–6

    Article  PubMed  CAS  Google Scholar 

  • Malik P, Terry TD, Gowda LR et al. (1996) Role of capsid structure and membrane protein processing in determining the size and copy number of peptides displayed on the major coat protein of filamentous bacteriophage. J Mol Biol 260(1):9–21

    Article  PubMed  CAS  Google Scholar 

  • Masip L, Klein-Marcuschamer D, Quan S et al. (2008) Laboratory evolution of Escherichia coli thioredoxin for enhanced catalysis of protein oxidation in the periplasm reveals a phylogenetically conserved substrate specificity determinant. J Biol Chem 283(2):840–8

    Article  PubMed  CAS  Google Scholar 

  • Matthews DJ, Wells JA (1993) Substrate phage: selection of protease substrates by monovalent phage display. Science 260(5111):1113–7

    Article  PubMed  CAS  Google Scholar 

  • Mazor Y, Van Blarcom T, Mabry R et al. (2007) Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli. Nat Biotechnol 25(5):563–5

    Article  PubMed  CAS  Google Scholar 

  • Meerman HJ, Georgiou G (1994) Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Biotechnology (NY) 12(11):1107–10

    Article  CAS  Google Scholar 

  • Mejean V, Iobbi-Nivol C, Lepelletier M et al. (1994) TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol 11(6):1169–79

    Article  PubMed  CAS  Google Scholar 

  • Mergulhao FJ, Summers DK, Monteiro GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23(3):177–202

    Article  PubMed  CAS  Google Scholar 

  • Missiakas D, Betton JM, Raina S (1996) New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol 21(4):871–84

    Article  PubMed  CAS  Google Scholar 

  • Mujacic M, Bader MW, Baneyx F (2004) Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GrpE system in the management of protein misfolding under severe stress conditions. Mol Microbiol 51(3):849–59

    Article  PubMed  CAS  Google Scholar 

  • Oresnik IJ, Ladner CL, Turner RJ (2001) Identification of a twin-arginine leader-binding protein. Mol Microbiol 40(2):323–31

    Article  PubMed  CAS  Google Scholar 

  • Orriss GL, Tarry MJ, Ize B et al. (2007) TatBC, TatB, and TatC form structurally autonomous units within the twin arginine protein transport system of Escherichia coli. FEBS Lett 581(21): 4091–7

    Article  PubMed  CAS  Google Scholar 

  • Paetzel M, Karla A, Strynadka NC et al. (2002) Signal peptidases. Chem Rev 102(12):4549–80

    Article  PubMed  CAS  Google Scholar 

  • Pallen MJ, Chaudhuri RR, Henderson IR (2003) Genomic analysis of secretion systems. Curr Opin Microbiol 6(5):519–27

    Article  PubMed  CAS  Google Scholar 

  • Paschke M, Hohne W (2005) A twin-arginine translocation (Tat)-mediated phage display system. Gene 350(1):79–88

    Article  PubMed  CAS  Google Scholar 

  • Perez-Rodriguez R, Fisher AC, Perlmutter JD et al. (2007) An essential role for the DnaK molecular chaperone in stabilizing over-expressed substrate proteins of the bacterial twin-arginine translocation pathway. J Mol Biol 367(3):715–30

    Article  PubMed  CAS  Google Scholar 

  • Pommier J, Mejean V, Giordano G et al. (1998) TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme (TorA) in Escherichia coli. J Biol Chem 273(26):16615–20

    Article  PubMed  CAS  Google Scholar 

  • Qiu J, Swartz JR, Georgiou G (1998) Expression of active human tissue-type plasminogen activator in Escherichia coli. Appl Environ Microbiol 64(12):4891–6

    PubMed  CAS  Google Scholar 

  • Rapoza MP, Webster RE (1993) The filamentous bacteriophage assembly proteins require the bacterial SecA protein for correct localization to the membrane. J Bacteriol 175(6):1856–9

    PubMed  CAS  Google Scholar 

  • Ribnicky B, Van Blarcom T, Georgiou G (2007) A scFv antibody mutant isolated in a genetic screen for improved export via the twin arginine transporter pathway exibits faster folding. J Mol Biol 369(3):631–9

    Article  PubMed  CAS  Google Scholar 

  • Richter S, Lindenstrauss U, Lucke C et al. (2007) Functional Tat transport of unstructured, small, hydrophilic proteins. J Biol Chem 282(46):33257–64

    Article  PubMed  CAS  Google Scholar 

  • Rietsch A, Belin D, Martin N et al. (1996) An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc Natl Acad Sci USA 93(23):13048–53

    Article  PubMed  CAS  Google Scholar 

  • Rodrigue A, Chanal A, Beck K et al. (1999) Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. J Biol Chem 274(19):13223–8

    Article  PubMed  CAS  Google Scholar 

  • Rose RW, Bruser T, Kissinger JC et al. (2002) Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45(4):943–50

    Article  PubMed  CAS  Google Scholar 

  • Samuelson P, Gunneriusson E, Nygren PA et al. (2002) Display of proteins on bacteria. J Biotechnol 96(2):129–54

    Article  PubMed  CAS  Google Scholar 

  • Sandkvist M (2001) Type II secretion and pathogenesis. Infect Immun 69(6):3523–35

    Article  PubMed  CAS  Google Scholar 

  • Sargent F, Bogsch EG, Stanley NR et al. (1998) Overlapping functions of components of a bacterial Sec-independent protein export pathway. Embo J 17(13):3640–50

    Article  PubMed  CAS  Google Scholar 

  • Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271(5255):1519–26

    Article  PubMed  CAS  Google Scholar 

  • Schiebel E, Driessen AJ, Hartl FU et al. (1991) Delta mu H+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64(5):927–39

    Article  PubMed  CAS  Google Scholar 

  • Schierle CF, Berkmen M, Huber D et al. (2003) The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J Bacteriol 185(19):5706–13

    Article  PubMed  CAS  Google Scholar 

  • Schlapschy M, Grimm S, Skerra A (2006) A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli. Protein Eng Des Sel 19(8):385–90

    Article  PubMed  CAS  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–7

    Article  PubMed  CAS  Google Scholar 

  • Spiess C, Beil A, Ehrmann M (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97(3):339–47

    Article  PubMed  CAS  Google Scholar 

  • Stathopoulos C, Georgiou G, Earhart CF (1996) Characterization of Escherichia coli expressing an Lpp’OmpA(46–159)-PhoA fusion protein localized in the outer membrane. Appl Microbiol Biotechnol 45(1–2):112–9

    Google Scholar 

  • Steiner D, Forrer P, Stumpp MT et al. (2006) Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat Biotechnol 24(7):823–31

    Article  PubMed  CAS  Google Scholar 

  • Strauch EM, (2007) Characterization and Applications of the Twin-Arginine Transporter pathway. Department of Biochemistry, pp. 188. University of Texas at Austin

    Google Scholar 

  • Strauch EM, Georgiou G (2007a) A bacterial two-hybrid system based on the twin-arginine transporter pathway of E. coli. Protein Sci 16(5):1001–8

    Article  PubMed  CAS  Google Scholar 

  • Strauch EM, Georgiou G (2007b) Escherichia coli tatC mutations that suppress defective twin-arginine transporter signal peptides. J Mol Biol 374(2):283–91

    Article  PubMed  CAS  Google Scholar 

  • Tokumoto U, Nomura S, Minami Y et al. (2002) Network of protein-protein interactions among iron-sulfur cluster assembly proteins in Escherichia coli. J Biochem (Tokyo) 131(5): 713–9

    CAS  Google Scholar 

  • Tullman-Ercek D, DeLisa MP, Kawarasaki Y et al. (2007) Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides. J Biol Chem 282(11):8309–16

    Article  PubMed  CAS  Google Scholar 

  • van der Wolk JP, de Wit JG, Driessen AJ (1997) The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events. Embo J 16(24):7297–304

    Article  PubMed  Google Scholar 

  • Veiga E, Sugawara E, Nikaido H et al. (2002) Export of autotransported proteins proceeds through an oligomeric ring shaped by C-terminal domains. Embo J 21(9):2122–31

    Article  PubMed  CAS  Google Scholar 

  • Wentzel A, Christmann A, Kratzner R et al. (1999) Sequence requirements of the GPNG beta-turn of the Ecballium elaterium trypsin inhibitor II explored by combinatorial library screening. J Biol Chem 274(30):21037–43

    Article  PubMed  CAS  Google Scholar 

  • Westerlund-Wikstrom B (2000) Peptide display on bacterial flagella: principles and applications. Int J Med Microbiol 290(3):223–30

    PubMed  CAS  Google Scholar 

  • Wilken C, Kitzing K, Kurzbauer R et al. (2004) Crystal structure of the DegS stress sensor: How a PDZ domain recognizes misfolded protein and activates a protease. Cell 117(4):483–94

    Article  PubMed  CAS  Google Scholar 

  • Zwick MB, Shen J,Scott JK (2000) Homodimeric peptides displayed by the major coat protein of filamentous phage. J Mol Biol 300(2):307–20

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Georgiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Strauch, EM., Georgiou, G. (2009). Mechanistic Challenges and Engineering Applications of Protein Export in E. coli . In: Lee, S.Y. (eds) Systems Biology and Biotechnology of Escherichia coli . Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9394-4_16

Download citation

Publish with us

Policies and ethics