Skip to main content

The Role of Arbuscular Mycorrhizas in Organic Farming

  • Chapter
Organic Crop Production – Ambitions and Limitations

Abstract

Arbuscular mycorrhizal fungi (AMF) are ubiquitous in natural and agricultural ecosystems. AMF enhance uptake of nutrients by plants, particularly phosphorus (P), and may also improve plant drought avoidance and disease control. AMF may also be necessary for the long-term sustainability of ecosystems, particularly due to their role in the maintenance of soil structure, and plant community structure and diversity. In agricultural systems, high colonisation of roots by AMF is favoured by the absence of mineral fertilisers that supply readily soluble P, minimal soil disturbance, avoidance of non-host plants and bare fallows, and, perhaps, a high degree of plant diversity and minimal use of biocides. Colonisation by AMF is often higher on organic farms than conventional farms and there is some evidence of an increase in species diversity of AMF on organic farms. These differences appear primarily due to the lack of fertilisers containing readily soluble P on organic farms. Yet high colonisation by AMF is not an inevitable outcome of organic farm management and colonisation may be limited on some organic farms by high rates of tillage or residual high soil available P. There is some indication that organic farms can develop a community of AMF with an increased capacity to enhance plant P uptake. However, AMF do not substitute for fertiliser inputs as the nutrients taken up by the fungi primarily originate from the finite pool of soil available nutrients and their removal in farm products must be matched by inputs from off-farm sources. Indeed, high colonisation by AMF may be considered an indicator of low soil available P. As AMF depend on host photosynthate for energy, high levels of colonisation may reduce plant growth under some environmental or farm management conditions. For instance, monocultures, high soil fertility, and high rates of tillage may stimulate development of less beneficial communities of AMF. The need for inoculants containing AMF on organic farms is unknown, but they may prove beneficial if bare fallows or weed-free crops of non-hosts are regularly included in the rotation. Overall, the high abundance of AMF that often results from organic management suggests an important role for the fungi in the functioning of organic farming systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, L.K., and Robson, A.D., 1977, The distribution and abundance of vesicular arbuscular endophytes in some Western Australian soils, Aust. J. Bot. 25: 515–522.

    Google Scholar 

  • Abbott, L.K., 1982, Comparative anatomy of vesicular-arbuscular mycorrhizas formed on subterranean clover, Aust. J. Bot. 30: 485–499.

    Google Scholar 

  • Adeyeye, E.I., Arogundade, L.A., Akintayo, E.T., Aisida, O.A., and Alao, P.A., 2000, Calcium, zinc and phytate interrelationships in some foods of major consumption in Nigeria, Food Chem. 71: 435–441.

    CAS  Google Scholar 

  • Al-Karaki, G., 2002, Benefit, cost and phosphorus use efficiency of mycorrhizal field-grown garlic and different soil phosphorus levels, J. Plant Nutr. 25: 1175–1184.

    CAS  Google Scholar 

  • An, Z.-Q., Hendrix, J.W., Hershman, D.E., Ferriss, R.S., and Henson, G.T., 1993, The influence of crop rotation and soil fumigation on a mycorrhizal fungal community associated with soybean, Mycorrhiza 3: 171–182.

    Google Scholar 

  • Artursson, V., Finlay, R.D., and Jansson, J.K., 2006, Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth, Environ. Microbiol. 8: 1–10.

    PubMed  CAS  Google Scholar 

  • Augé, R.M., 2001, Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis, Mycorrhiza 11: 3–42.

    Google Scholar 

  • Azcón, R., and Ocampo, J.A., 1981, Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars, New Phytol. 87: 677–685.

    Google Scholar 

  • Baltruschat, H., and Dehne, H.W., 1989, The occurrence of vesicular-arbuscular mycorrhiza in agro-ecosystems. II. Influence of nitrogen fertilization and green manure in continuous monoculture and in crop rotation on the inoculum potential of winter barley, Plant Soil 113: 251–256.

    Google Scholar 

  • Baylis, G.T.S., 1975, The magnolioid mycorrhiza and mycotrophy in root systems derived from it, in: Endomycorrhizas, F.E. Sanders, B. Mosse, and P.B. Tinker, eds., Academic Press, London, pp. 373–389.

    Google Scholar 

  • Bellgard, S.E., 1992, The propagules of vesicular-arbuscular mycorrhizal (VAM) fungi capable of initiating VAM infection after topsoil disturbance, Mycorrhiza, 1: 147–152.

    Google Scholar 

  • Bethlenfalvay, G.J., Brown, M.S., and Pacovsky, R.S., 1982, Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: development of the host plant, Ecol. Epidemiol. 72: 889–893.

    CAS  Google Scholar 

  • Bethlenfalvay, G.J., and Linderman, R.G., eds., 1992, Mycorrhizae in Sustainable Agriculture, American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Bethlenfalvay, G.J., and Schüepp, H., 1994, Arbuscular mycorrhizas and agrosystem stability, in: Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Systems, S. Gianinazzi, and H. Schüepp, eds., Birkhäuser Verlag, Basel, pp. 117–131.

    Google Scholar 

  • Bever, J.D., 2002, Host-specificity of AM fungal population growth rates can generate feedback on plant growth, Plant Soil 244: 281–290.

    CAS  Google Scholar 

  • Boddington, C.L., and Dodd, J.C., 2000, The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol, Plant Soil 218: 137–144.

    CAS  Google Scholar 

  • Bødker, L., Kjøller, R., Kristensen, K., and Rosendahl, S., 2002, Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea, Mycorrhiza 12: 7–12.

    PubMed  Google Scholar 

  • Bolan, N.S., 1991, A critical review of the role of mycorrhizal fungi in uptake of phosphorus by plants, Plant Soil 134: 189–207.

    CAS  Google Scholar 

  • Bradley, K., Drijber, R.A., and Knops, J., 2006, Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi, Soil Biol. Biochem. 38: 1583–1595.

    CAS  Google Scholar 

  • Brundrett, M., Bougher, N., Dell, B., Grove, T., and Malajczuk, N., 1996, Working with Mycorrhizas in Forestry and Agriculture, Australian Centre for International Agricultural Research Monograph 32, Pirie Printers, Canberra.

    Google Scholar 

  • Burkitt, L.L., Small, D.R., McDonald, J.W., Wales, W.J., and Jenkin, M.L., 2007a, Comparing irrigated biodynamic and conventionally managed dairy farms. I. Soil and pasture properties, Aust. J. Exp. Agric. 47: 479–488.

    CAS  Google Scholar 

  • Burkitt, L.L., Wales, W.J., McDonald, J.W., Small, D.R., and Jenkin, M.L., 2007b, Comparing irrigated biodynamic and conventionally managed dairy farms. II. Milk production and composition, and animal health, Aust. J. Exp. Agric. 47: 489–494.

    Google Scholar 

  • Burrows, R.L., and Pfleger, F.L., 2002, Arbuscular mycorrhizal fungi respond to increasing plant diversity, Can. J. Bot. 80: 120–130.

    Google Scholar 

  • Cavagnaro, T.R., Jackson, L.E., Six, J., Ferris, H., Goyal, S., Asami, D., and Scow, K.M., 2006, Arbuscular mycorrhizas, microbial communities, nutrient availability and soil aggregates in organic tomato production, Plant Soil 282: 209–225.

    CAS  Google Scholar 

  • Clapp, J.P., Young, J.P.W., Merryweather, J.W., and Fitter, A.H., 1995, Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community, New Phytol. 130: 259–265.

    Google Scholar 

  • Clark, R.B., and Zeto, S.K., 2000, Mineral acquisition by arbuscular mycorrhizal plants, J. Plant Nutr. 23: 867–902.

    CAS  Google Scholar 

  • Cooper, K.M., and Tinker, P.B., 1981, Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas IV. Effect of environmental variables on movement of phosphorus, New Phytol. 88: 327–339.

    CAS  Google Scholar 

  • Crush, J.R., 1974, Plant growth responses to vesicular-arbuscular mycorrhiza. VII. Growth and nodulation of some herbage legumes, New Phytol. 73: 743–752.

    CAS  Google Scholar 

  • Cuenca, G., and Meneses, E., 1996, Diversity patterns of arbuscular mycorrhizal fungi associated with cacao in Venezuela, Plant Soil 183: 315–322.

    CAS  Google Scholar 

  • Daniell, T.J., Husband, R., Fitter, A.H., and Young, J.P.W., 2001, Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops, FEMS Microbiol. Ecol. 36: 203–209.

    PubMed  CAS  Google Scholar 

  • Daniels Hetrick, B.A., Thompson Wilson, G., Gerschefske Kitt, D., and Schwab, A.P., 1988, Effects of soil microorganisms on mycorrhizal contribution to growth of big bluestem grass in non-sterile soil, Soil Biol. Biochem. 20: 501–507.

    Google Scholar 

  • Dann, P.R., Derrick, J.W., Dumaresq, D.C., and Ryan, M.H., 1996, The response of organic and conventionally grown wheat to superphosphate and reactive rock phosphate, Aust. J. Exp. Agric. 36: 71–78.

    Google Scholar 

  • Dekkers, T.B.M., and van der Werff, P.A., 2001, Mutualistic functioning of indigenous arbuscular mycorrhizae in spring barley and winter wheat after cessation of long-term phosphate fertilization, Mycorrhiza 10: 195–201.

    Google Scholar 

  • Derrick, J.W, and Dumaresq, D.C., 1999, Soil chemical properties under organic and conventional management in southern New South Wales, Aust. J. Soil Res. 37: 1047–1055.

    CAS  Google Scholar 

  • Douds, D.D., and Johnson, N.C., 2003, Contributions of arbuscular mycorrhizas to soil biological fertility, in: Soil Biological Fertility – A Key to Sustainable Land Use in Agriculture, L.K. Abbott, and D.V. Murphy, eds., Kluwer, Boston, MA, pp. 129–162.

    Google Scholar 

  • Douds, D.D., Nagahashi, G., Pfeffer, P.E., Kayser, W.M., and Reider, C., 2005, On-farm production and utilisation of arbuscular mycorrhizal inoculum, Can. J. Plant Sci. 85: 15–21.

    Google Scholar 

  • Douds, D.D., Nagahashi, G., Pfeffer, P.E., Reider, C., and Kayser, W.M., 2006, On-farm production of AM fungus inoculum in mixtures of compost and vermiculite, Bioresource Technol. 97: 809–818.

    CAS  Google Scholar 

  • Eason, W.R., Scullion, J., and Scott, E.P., 1999, Soil parameters and plant responses associated with arbuscular mycorrhizas from contrasting grassland management regimes, Agric. Ecosyst. Environ. 73: 245–255.

    Google Scholar 

  • Edwards-Jones, G., and Howells, O., 2001, The origin and hazards of inputs to crop protection in organic farming systems: are they sustainable?, Agric. Syst. 67: 31–47.

    Google Scholar 

  • Egerton-Warburton, L.M., and Allen, E.B., 2000, Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient, Ecol. Appl. 10: 484–496.

    Google Scholar 

  • Egger, K.N., and Hibbett, D.S., 2004, The evolutionary implications of exploitation in mycorrhizas, Can. J. Bot. 82: 1110–1121.

    Google Scholar 

  • Entz, M.H., Penner, K.R., Vessey, J.K., Zelmer, C.D. and Thiessen Martens, J.R., 2004, Mycorrhizal colonisation of flax under long-term organic and conventional management, Can. J. Plant Sci. 84: 1097–1099.

    Google Scholar 

  • Ezawa, T., Yamamoto, K., and Yoshida, S., 2000, Species composition and spore density of indigenous vesicular-arbuscular mycorrhizal fungi under different conditions of P-fertility as revealed by soybean trap culture, Soil Sci. Plant Nutr. 46: 291–297.

    Google Scholar 

  • Feldmann, F., and Boyle, C., 1999, Weed-mediated stability of arbuscular mycorrhizal effectiveness in maize monocultures, J. Appl. Bot. 73: 1–5.

    Google Scholar 

  • Fitter, A.H., 1985, Functioning of vesicular-arbuscular mycorrhizas under field conditions, New Phytol. 99: 257–265.

    Google Scholar 

  • Franke-Snyder, M., Douds Jr., D.D., Galvez, L., Phillips, J.G., Wagoner, P., Drinkwater, L., and Morton, J.B., 2001, Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA., Appl. Soil Ecol. 16: 35–48.

    Google Scholar 

  • Furlan, V., and Bernier-Cardou, M., 1989, Effects of N, P, and K on formation of vesicular-arbuscular mycorrhizae, growth and mineral content of onion, Plant Soil 113: 167–174.

    CAS  Google Scholar 

  • Gabriel, D., Roschewitz, I., Tscharntke, T., and Thies, C., 2006, Beta diversity at different spatial scales: plant communities in organic and conventional agriculture, Ecol. Appl. 16: 2011–2021.

    PubMed  Google Scholar 

  • Gaur, A., and Adholeya, A., 2000, On-farm production of VAM inoculum and vegetable crops in marginal soil amended with organic matter, Trop. Agric. 77: 21–25.

    Google Scholar 

  • Gaur, A., and Adholeya, A., 2002, Arbuscular-mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter, Biol. Fertil. Soils 35: 214–218.

    CAS  Google Scholar 

  • Gavito, M.E., Olsson, P.A., Rouhier, H., Medina-Penafiel, A., Jakobsen, I., Bago, A., and Azcón-Aguilar, C., 2005, Temperature constraints on the growth and functioning of root organ cultures with arbuscular-mycorrhizal fungi, New Phytol. 168: 179–188.

    PubMed  CAS  Google Scholar 

  • Gianinazzi, S., and Vosátka, M., 2004, Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business, Can. J. Bot. 82: 1264–1271.

    Google Scholar 

  • Giovannetti, M., and Mosse, B., 1980, An evaluation of techniques for measuring VAM infection in roots, New Phytol. 84: 489–500.

    Google Scholar 

  • Gosling, P., Hodge, A., Goodlass, G., and Bending, G.D., 2006, Arbuscular mycorrhizal fungi and organic farming, Agric. Ecosyst. Environ. 113: 17–35.

    Google Scholar 

  • Govindarajulu, M., Pfeffer, P.E., Jin, H., Abubaker, J., Douds, D.D., Allen, J.A., Bücking, H., Lammers, P.J., and Shachar-Hill, Y., 2005, Nitrogen transfer in the arbuscular mycorrhizal symbiosis, Nat. Lett. 435: 819–823.

    CAS  Google Scholar 

  • Grace, C., and Stribley, D.P., 1991, A safer procedure for routine staining of vesicular arbuscular mycorrhizal fungi, Mycol. Res. 95: 1160–1162.

    Google Scholar 

  • Graham, J.H., Leonard, R.T., and Menge, J.A., 1981, Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular arbuscular mycorrhiza formation, Plant Physiol. 68: 548–552.

    PubMed  CAS  Google Scholar 

  • Graham, J.H., Duncan, L.W., and Eissenstat, D.M., 1997, Carbohydrate allocation patterns in citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonisation and mycorrhizal dependency, New Phytol. 135: 335–343.

    CAS  Google Scholar 

  • Graham, J.H., and Eissenstat, D.M., 1998, Field evidence for carbon cost of citrus mycorrhizas, New Phytol. 140: 103–110.

    Google Scholar 

  • Graham, J.H., 2000, Assessing costs of arbuscular mycorrhizal symbiosis in agroecosystems, in: Current Advances in Mycorrhizae Research, G.K. Podila, and D.D. Douds, eds., APS Press, St. Paul, pp. 111–126.

    Google Scholar 

  • Graham, J.H., and Abbott, L.K., 2000, Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi, Plant Soil 220: 207–218.

    CAS  Google Scholar 

  • Graham, R.D., Humphries, J.M., and Kitchen J.L., 2000, Nutritionally enhanced cereals: a sustainable foundation for a balanced diet, Asia Pac. J. Clin. Nutr. 9(Suppl.): S91–S96.

    Google Scholar 

  • Gryndler, M., Larsen, J., Hršelová, H., Řezáčová, V., Gryndlerová, H., and Kubát, J., 2006, Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment, Mycorrhiza 16: 159–166.

    PubMed  CAS  Google Scholar 

  • Gupta, M.L., Prasad, A., Ram, M., and Kumar, S., 2002, Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions, Bioresource Technol. 81: 77–79.

    CAS  Google Scholar 

  • Harinikumar, K.M., and Bagyaraj, D.J., 1996, Persistence of introduced Glomus intraradices in the field as influenced by repeated inoculation and cropping system, Biol. Fertil. Soils 21: 184–188.

    Google Scholar 

  • Harrier, L.A., and Watson, C.A., 2004, The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or sustainable farming systems, Pest Manage. Sci. 60: 149–157.

    CAS  Google Scholar 

  • He, X.-H., Critchley, C., and Bledsoe, C., 2003, Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs), Crit. Rev. Plant Sci. 22: 531–567.

    Google Scholar 

  • Helgason, T., Daniell, T.J., Husband, R., Fitter, A.H., and Young, J.P.W., 1998, Ploughing up the wood-wide web? Nature 394: 431.

    PubMed  CAS  Google Scholar 

  • Hetrick, B.A.D., Wilson, G.W.T., and Cox, T.S., 1992, Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors, Can. J. Bot. 70: 2032–2040.

    Google Scholar 

  • Hetrick, B.A.D., Wilson, G.W.T., and Cox, T.S., 1993, Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis, Can. J. Bot. 71: 512–518.

    Google Scholar 

  • Hetrick, B.A.D., Hartnett, D.C., Wilson, G.W.T., and Gibson, D.J., 1994, Effects of mycorrhizae, phosphorus availability, and plant density on yield relationships among competing tallgrass prairie grasses, Can. J. Bot. 72: 168–176.

    Google Scholar 

  • Hetrick, B.A.D., Wilson, G.W.T., and Todd, T.C., 1996, Mycorrhizal responses in wheat cultivars: relationship to phosphorus, Can. J. Bot. 74: 19–25.

    CAS  Google Scholar 

  • Hijri, I., Sýkorová, Z., Oehl, F., Ineichen, K., Mäder, P., Weimken, A., and Redecker, D., 2006, Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity, Mol. Ecol. 15: 2277–2289.

    PubMed  CAS  Google Scholar 

  • Ho, I., and Trappe, J.M., 1973, Translocation of 14C from Festuca plants to their endomycorrhizal fungi, Nat. New Biol. 244: 30–31.

    PubMed  CAS  Google Scholar 

  • Hulugalle, N.R., Antwistle, P.C., Cooper, J.L., Allen, S.J., and Nehl, D.B., 1998, Effect of long-fallow on soil quality and cotton lint yield in an irrigated, self-mulching, grey Vertosol in the central-west of New South Wales, Aust. J. Soil Res. 36: 621–629.

    Google Scholar 

  • Jakobsen, I., Abbott, L., and Robson, A.D., 1992a, External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae and phosphorus inflow into roots, New Phytol. 120: 371–380.

    CAS  Google Scholar 

  • Jakobsen, I., Abbott, L.K., and Robson, A.D., 1992b, External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. II. Hyphal transport of 32 P over defined distances, New Phytol. 120: 509–516.

    CAS  Google Scholar 

  • Jakobsen, I., Gazey, C., and Abbott, L.K., 2001, Phosphate transport by communities of arbuscular mycorrhizal fungi in intact cores, New Phytol. 149: 95–103.

    CAS  Google Scholar 

  • Jansa, J., Mozafar, A., Anken, T., Ruh, R., Sanders, I.R., and Frossard, E., 2002, Diversity and structure of AMF communities as affected by tillage in a temperate soil, Mycorrhiza 12: 225–234.

    PubMed  CAS  Google Scholar 

  • Jansa, J., Mozafar, A., Kuhn, G., Anken, T., Ruh, R., Sanders, I.R., and Frossard, E., 2003, Soil tillage affects the community structure of mycorrhizal fungi in maize roots, Ecol. Appl. 13: 1164–1176.

    Google Scholar 

  • Jasper, D.A., Abbott, L.K., and Robson, A.D., 1991, The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types, New Phytol. 118: 471–476.

    Google Scholar 

  • Jasper, D.A., Abbott, L.K., and Robson, A.D., 1993, The survival of infective hyphae of vesicular-arbuscular mycorrhizal fungi in dry soil: an interaction with sporulation, New Phytol. 124: 473–479.

    Google Scholar 

  • Jastrow, J.D., Miller, R.M., and Lussenhop, J., 1998, Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie, Soil Biol. Biochem. 30: 905–916.

    CAS  Google Scholar 

  • Jifon, J.L., Graham, J.H., Drouillard, D.L., and Syvertsen, J.P., 2002, Growth depression of mycorrhizal Citrus seedlings grown at high phosphorus supply is mitigated by elevated CO2, New Phytol. 153: 133–142.

    Google Scholar 

  • Johnson, N.C., Pfleger, F.L., Crookston, R.K., Simmons, S.R., and Copeland, P.J., 1991, Vesicular-arbuscular mycorrhizas respond to corn and soybean cropping history, New Phytol. 117: 657–663.

    Google Scholar 

  • Johnson, N.C., and Pfleger, F.L., 1992, Vesicular-arbuscular mycorrhizae and cultural stresses, in: Mycorrhizae in Sustainable Agriculture, G.J. Bethlenfalvay, and R.G. Linderman, eds., American Society of Agronomy, Madison, WI, pp. 71–99.

    Google Scholar 

  • Johnson, N.C., Copeland, P.J., Crookston, R.K., and Pfleger, F.L., 1992, Mycorrhizae: possible explanation for yield decline with continuous corn and soybean, Agron. J. 84:387–390.

    Google Scholar 

  • Johnson, N.C., 1993, Can fertilisation of soil select less mutualistic mycorrhizae? Ecol. Appl. 3: 749–757.

    Google Scholar 

  • Johnson, N.C., Graham, J.H., and Smith, F.A., 1997, Functioning of mycorrhizal associations along the mutualism-parasitism continuum, New Phytol. 135: 575–585.

    Google Scholar 

  • Johnson, D., Leake, J.R., Ostle, N., Ineson, P., and Read, D.J., 2002, In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil, New Phytol. 153: 327–334.

    CAS  Google Scholar 

  • Jones, K., and Hendrix, J.W., 1987, Inhibition of root extension in tobacco by the mycorrhizal fungus Glomus macrocarpum and its prevention by benomyl, Soil Biol. Biochem. 19: 297–299.

    Google Scholar 

  • Jones, M.D., and Smith, S.E., 2004, Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can. J. Bot. 82: 1089–1109.

    Google Scholar 

  • Kabir, Z., and Koide, R.T., 2002, Effect of autumn and winter mycorrhizal cover crops on soil properties, nutrient uptake and yield of sweet corn in Pennsylvania, USA, Plant Soil 238: 205–215.

    CAS  Google Scholar 

  • Kahiluoto, H., Ketoja, E., and Vestberg, M., 2000, Promotion of utilization of arbuscular mycorrhiza through reduced P fertilization 1. Bioassays in growth chamber, Plant Soil 227:191–206.

    CAS  Google Scholar 

  • Kahiluoto, H., Ketoja, E., Vestberg, M., and Saarela, I., 2001, Promotion of AM utilization through reduced P fertilization 2. Field studies, Plant Soil 231: 65–79.

    CAS  Google Scholar 

  • Kelly, R.M., Edwards, D.G., Thompson, J.P., and Magarey, R.C., 2005, Growth responses of sugarcane to mycorrhizal spore density and phosphorus rate, Aust. J. Agric. Res. 56: 9–12.

    Google Scholar 

  • Khalil, S., Loynachan, T.E., and Tabatabai, M.A., 1994, Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars, Agron. J. 86: 949–958.

    Google Scholar 

  • Khaliq, A., and Sanders, F.E., 2000, Effects of vesicular-arbuscular mycorrhizal inoculation on the yield and phosphorus uptake of field-grown barley, Soil Biol. Biochem. 32: 1691–1696.

    CAS  Google Scholar 

  • Khasa, P., Furlan, V., and Fortin, J.A., 1992, Response of some tropical plant species to endomycorrhizal fungi under field conditions, Trop. Agric. 69: 279–283.

    Google Scholar 

  • Kiers, E.T., West, S.A., and Denison, R.F., 2002, Mediating mutualism: farm management practices and evolutionary changes in symbiont co-operation, J. Appl. Ecol. 39:745–754.

    Google Scholar 

  • Kirchmann, H., and Ryan, M.H., 2004, Nutrients in organic farming – Are there advantages from the exclusive use of organic manures and untreated minerals? New directions for a diverse planet, Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004.

    Google Scholar 

  • Kirchmann, H., Thorvaldsson, G., Bergström, L., Gerzabek, M., Andrén, O., Eriksson, L.-O., and Winninge, M., 2008, Fundamenta ls of organic agriculture – past and present, in: Organic Crop Production – Ambitions and Limitations, H. Kirchmann, and L. Bergström, eds., Springer, Dordrecht, The Netherlands.

    Google Scholar 

  • Kitchen, J.L., McDonald, G.K., Shepherd, K.W., Lorimer, M.F., and Graham, R.D., 2003, Comparing wheat grown in South Australian organic and conventional farming systems. I. Growth and grain yield, Aust. J. Agric. Res. 54: 889–901.

    Google Scholar 

  • Klironomos, J.N., McCune, J., Hart, M., and Neville, J., 2000, The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity, Ecol. Lett. 3: 137–141.

    Google Scholar 

  • Klironomos, J.N., Hart, M.M., Gurney, J.E., and Moutoglis, P., 2001, Interspecific differences in the tolerance of arbuscular mycorrhizal fungi to freezing and drying, Can. J. Bot. 79: 1161–1166.

    Google Scholar 

  • Klironomos, J.N., 2003, Variation in plant response to native and exotic arbuscular mycorrhizal fungi, Ecology 84: 2292–2301.

    Google Scholar 

  • Koide, R.T., and Kabir, Z., 2000, Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate, New Phytol. 148: 511–517.

    CAS  Google Scholar 

  • Koide, R.T., and Mosse, B., 2004, A history of research on arbuscular mycorrhiza, Mycorrhiza 14: 145–163.

    PubMed  Google Scholar 

  • Koske, R.E., 1987, Distribution of VA mycorrhizal fungi along a latitudinal gradient, Mycologia 79: 55–68.

    Google Scholar 

  • Kothari, S.K., Marschner, H., and Römheld, V., 1991, Effect of a vesicular-arbuscular mycorrhizal fungus and rhizosphere microorganisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L.), New Phytol. 117: 649–655.

    CAS  Google Scholar 

  • Land, S., and Schönbeck, F., 1991, Influence of different soil types on abundance and seasonal dynamics of vesicular arbuscular mycorrhizal fungi in arable soils in North Germany, Mycorrhiza 1: 39–44.

    Google Scholar 

  • Leake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L., and Read, D., 2004, Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning, Can. J. Bot. 82: 1016–1045.

    Google Scholar 

  • Lekberg, Y., and Koide, R.T., 2005a, Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003, New Phytol. 168: 189–204.

    CAS  Google Scholar 

  • Lekberg, Y., and Koide, R.T., 2005b, Arbuscular mycorrhizal fungi, rhizobia, available soil P and nodulation of groundnut (Arachis hypogaea) in Zimbabwe, Agric. Ecosyst. Environ. 110: 143–148.

    Google Scholar 

  • Lerat, S., Lapointe, L., Gutjahr, S., Piché, Y., and Vierheilig, H., 2003, Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent, New Phytol. 157: 589–595.

    Google Scholar 

  • Limonard, T., and Ruissen, M.A., 1989, The significance of VA-mycorrhiza to future arable farming in the Netherlands, Neth. J. Plant. Path. 95 (Suppl. 1): 129–135.

    Google Scholar 

  • Løes, A.K., and Øgaard, A.F., 1997, Changes in nutrient content of agricultural soil on conversion to organic farming in relation to farm-level nutrient balances and soil contents of clay and organic matter, Acta Agric. Scand. (Section B) 47: 201–214.

    Google Scholar 

  • Mäder, P., Edenhofer, S., Boller, T., Wiemken, A., and Niggli, U., 2000, Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation, Biol. Fertil. Soils 31: 150–156.

    Google Scholar 

  • Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., and Niggli, U., 2002, Soil fertility and biodiversity in organic farming, Science 296: 1694–1697.

    PubMed  Google Scholar 

  • Mamatha, G., Bagyaraj, D.J., and Jaganath, S., 2002, Inoculation of field-established mulberry and papaya with arbuscular mycorrhizal fungi and a mycorrhiza helper bacterium, Mycorrhiza 12: 313–316.

    PubMed  CAS  Google Scholar 

  • Mårtensson, A.M., and Carlgren, K., 1994, Impact of phosphorus fertilisation on VAM diaspores in two Swedish longterm field experiments, Agric. Ecosyst. Environ. 47: 327–334.

    Google Scholar 

  • McGonigle, T.P., 1988, A numerical analysis of published field trials with vesicular-arbuscular mycorrhizal fungi, Funct. Ecol. 2: 473–478.

    Google Scholar 

  • Menéndez, A.B., Scervino, J.M., and Godeas, A.M., 2001, Arbuscular mycorrhizal populations associated with natural and cultivated vegetation on a site of Buenos Aires province, Argentina, Biol. Fertil. Soils 33: 373–381.

    Google Scholar 

  • Miller, R.L., and Jackson, L.E., 1998, Survey of vesicular-arbuscular mycorrhizae in lettuce production in relation to management and soil factors, J. Agric. Sci. 130: 173–182.

    Google Scholar 

  • Miller, M.H., 2000, Arbuscular mycorrhizae and the phosphorus nutrition of maize: a review of Guelph studies, Can. J. Plant Sci. 80: 47–52.

    CAS  Google Scholar 

  • Muckle, G.E., 2003, The functioning of arbuscular mycorrhizal fungi in land under different agricultural management intensities, Ph. D. thesis, University of Sheffield, Department of Animal and Plant Sciences, Sheffield, UK.

    Google Scholar 

  • Mulligan, M.F., Smucker, A.J.M., and Safir, G.F., 1985, Tillage modifications of dry edible bean root colonization by VAM fungi, Agron. J. 77: 140–144.

    Google Scholar 

  • Newman, E.I., and Reddell, P., 1987, The distribution of mycorrhizas among families of vascular plants, New Phytol. 106: 745–751.

    Google Scholar 

  • Newsham, K.K., Fitter, A.H., and Watkinson, A.R., 1995, Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field, J. Ecol. 83: 991–1000.

    Google Scholar 

  • Nguyen, M.L., Haynes, R.J., and Goh, K.M., 1995, Nutrient budgets and status in three pairs of conventional and alternative mixed cropping farms in Canterbury, New Zealand, Agric. Ecosyst. Environ. 52: 149–162.

    Google Scholar 

  • O’Connor, P.J., Smith, S.E., and Smith, F.A., 2002, Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland, New Phytol. 154: 209–218.

    Google Scholar 

  • Oehl, F., Oberson, A., Tagmann, H.U., Besson, J.M., Dubois, D., Mäder, P., Roth, H.-R., and Frossard, E., 2002, Phosphorus budget and phosphorus availability in soils under organic and conventional farming, Nutr. Cycl. Agroecosys. 62: 25–35.

    CAS  Google Scholar 

  • Oehl, F., Sieverding, E., Ineichen, K., Mäder, P., Boller, T., and Wiemken, A., 2003, Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe, Appl. Environ. Microbiol. 69: 2816–2824.

    PubMed  CAS  Google Scholar 

  • Oehl, F., Sieverding, E., Mäder, P., Dubois, D., Ineichen, K., Boller, T., and Wiemken, A., 2004, Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi, Oecologia 138: 574–583.

    PubMed  Google Scholar 

  • Olsson, P.A., Thingstrup, I., Jakobsen, I., and Bååth, E., 1999, Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field, Soil Biol. Biochem. 31: 1879–1887.

    CAS  Google Scholar 

  • Ortas, I., 2003, Effect of selected mycorrhizal inoculation on phosphorus sustainability in sterile and non-sterile soils in the Harran Plain in South Anatolia, J. Plant Nutr. 26: 1–17.

    CAS  Google Scholar 

  • Owusu-Bennoah, E., and Mosse, B., 1979, Plant growth responses to vesicular-arbuscular mycorrhiza. XI. Field inoculation responses in barley, lucerne and onion, New Phytol. 83: 671–679.

    Google Scholar 

  • Pearson, J.N., and Schweiger, P., 1993, Scutellospora calospora (Nicol. & Gerd.) Walker and Sanders associated with subterranean clover: dynamics of colonization, sporulation and soluble carbohydrates, New Phytol. 124: 215–219.

    Google Scholar 

  • Penfold, C.M., Miyan, M.S., Reeves, T.G., and Grierson, I.T., 1995, Biological farming for sustainable agricultural production, Aust. J. Exp. Agric. 35: 849–856.

    Google Scholar 

  • Peterson, R.L., Massicotte, H.B., and Melville, L.H., 2004, Mycorrhizas: Anatomy and Cell Biology, NRC Research Press, Ottawa, Canada.

    Google Scholar 

  • Pfeffer, P.E., Douds Jr., D.D., Becard, G., and Shachar-Hill, Y., 1999, Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza, Plant Physiol. 120: 587–598.

    PubMed  CAS  Google Scholar 

  • Pfeffer, P.E., Douds Jr., D.D., Bücking, H., Schwartz, D.P., and Shachar-Hill, Y., 2004, The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis, New Phytol. 163: 617–627.

    Google Scholar 

  • Piotrowski, J.S., Denich, T., Klironomos, J.N., Graham, J.M., and Rillig, M.C., 2004, The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species, New Phytol. 164: 365–373.

    Google Scholar 

  • Plenchette, C., Furlan, V., and Fortin, J.A., 1981, Growth stimulation of apple trees in unsterilized soil under field conditions with VA mycorrhiza inoculation, Can. J. Bot. 59: 2003–2008.

    Google Scholar 

  • Plenchette, C., Fortin, J.A., and Furlan, V., 1983, Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility I. Mycorrhizal dependency under field conditions, Plant Soil 70: 199–209.

    CAS  Google Scholar 

  • Plenchette, C., and Perrin, R., 1992, Evaluation in the greenhouse of the effects of fungicides on the development of mycorrhiza on leek and wheat, Mycorrhiza 1: 59–62.

    CAS  Google Scholar 

  • Purin, S., Filho, O.K., and Stürmer, S.L., 2006, Mycorrhizae activity and diversity in conventional and organic apple orchards from Brazil, Soil Biol. Biochem. 38: 1831–1839.

    CAS  Google Scholar 

  • Rangeley, A., Daft, M.J., and Newbould, P., 1982, The inoculation of white clover with mycorrhizal fungi in unsterile hill soils, New Phytol. 92: 89–102.

    Google Scholar 

  • Rillig, M.C., Wright, S.F., and Eviner, V.T., 2002, The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species, Plant Soil 238: 325–333.

    CAS  Google Scholar 

  • Rillig, M.C., and Mummey, D.L., 2006, Mycorrhizas and soil structure, New Phytol. 171: 41–53.

    PubMed  CAS  Google Scholar 

  • Rosendahl, S., and Stukenbrock, E.H., 2004, Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rDNA sequences, Mol. Ecol. 13: 3179–3186.

    PubMed  CAS  Google Scholar 

  • Runge-Metzger, A., 1995, Closing the cycle: obstacles to efficient P management for improved global food security, in: Phosphorus in the Global Environment, H. Tiessen, ed., John Wiley, Chichester, UK, pp. 27–42.

    Google Scholar 

  • Ryan, M.H., Chilvers, G.A., and Dumaresq, D.C., 1994, Colonisation of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbour, Plant Soil 160: 33–40.

    Google Scholar 

  • Ryan, M.H., 1998, The ecology of VAM fungi in contrasting Australian agricultural systems, Ph. D. thesis, The Australian National University, Department of Botany and Zoology, Canberra, Australia.

    Google Scholar 

  • Ryan, M.H., and Ash, J.E., 1999, Effects of phosphorus and nitrogen on growth of pasture plants and VAM fungi in SE Australian soils with contrasting fertiliser histories (conventional and biodynamic), Agric. Ecosyst. Environ. 73: 51–62.

    Google Scholar 

  • Ryan, M.H., Small, D.R., and Ash, J E., 2000, Phosphorus controls the level of colonisation by arbuscular mycorrhizal fungi in conventional and biodynamic irrigated dairy pastures, Aust. J. Exp. Agric. 40: 663–670.

    Google Scholar 

  • Ryan, M.H., Norton, R.M., Kirkegaard, J.A., McCormick, K.M., Knights, S.E., and Angus, J.F., 2002, Increasing mycorrhizal colonisation does not improve growth and nutrition of wheat on Vertosols in south-eastern Australia, Aust. J. Agric. Res. 53: 1173–1181.

    CAS  Google Scholar 

  • Ryan, M.H., and Graham, J.H., 2002, Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244: 263–271.

    CAS  Google Scholar 

  • Ryan, M.H., and Angus, J.F., 2003, Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield, Plant Soil 250: 225–239.

    CAS  Google Scholar 

  • Ryan, M.H., Derrick, J.W., and Dann, P.R., 2004, Grain mineral concentrations and yield of wheat grown under organic and conventional management, J. Sci. Food Agric. 84: 207–216.

    CAS  Google Scholar 

  • Ryan, M.H., van Herwaarden, A.F., Angus, J.F., and Kirkegaard, J.A., 2005, Reduced growth of autumn-sown wheat in a low P soil is associated with high colonisation by arbuscular mycorrhizal fungi, Plant Soil 270: 275–286.

    CAS  Google Scholar 

  • Ryan, M.H., McInerney, J.K., Record, I.R., and Angus, J.F., 2008, Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi, J. Sci. Food Agric. 88: 1208–1216.

    CAS  Google Scholar 

  • Sáinz, M.J., Taboada-Castro, M.T., and Vilarino, A., 1998, Growth, mineral nutrition and mycorrhizal colonization of red clover and cucumber plants grown in a soil amended with composted urban wastes, Plant Soil 205: 85–92.

    Google Scholar 

  • Sattelmacher, B., Reinhard, S., and Pomikalko, A., 1991, Differences in mycorrhizal colonisation of rye (Secale cereale L.) grown in conventional or organic (biological-dynamic) farming systems, J. Agron. Crop Sci. 167: 350–355.

    Google Scholar 

  • Schüβler, A., Schwarzott, D., and Walker, C., 2001, A new fungal phylum, the Glomeromycota: phylogeny and evolution, Mycol. Res. 105: 1413–1421.

    Google Scholar 

  • Schüβler, A., 2006, Darmstadt; http://www.AMF-phylogeny.com. Assessed January 2006.

  • Schwartz, M.W., Hoeksema, J.D., Gehring, C.A., Johnson, N.C., Klironomos, J.N., Abbott, L.K., and Pringle, A., 2006, The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum, Ecol. Lett. 9: 501–515.

    PubMed  Google Scholar 

  • Schwarzott, D., Walker, C., and Schüβler, A., 2001, Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic, Mol. Phylogenet. Evol. 21: 190–197.

    PubMed  CAS  Google Scholar 

  • Schweiger, P.F., Robson, A.D., and Barrow, N.J., 1995, Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species, New Phytol. 131: 247–254.

    Google Scholar 

  • Scullion, J., Eason, W.R., and Scott, E.P., 1998, The effectivity of arbuscular mycorrhizal fungi from high input conventional and organic grassland and grass-arable rotations, Plant Soil 204: 243–254.

    CAS  Google Scholar 

  • Sieverding, E., and Oehl, F., 2006, Revision of Entrophospora and description of Kuklospora and Intraspora, two new genera in the arbuscular mycorrhizal Glomeromycetes, J. Appl. Bot. Food Qual. 80: 69–81.

    Google Scholar 

  • Sjöberg, J., Persson, P., Mårtensson, A., Mattsson, L., Adholeya, A., and Alström, S., 2004, Occurrence of Glomeromycota spores and some arbuscular mycorrhiza fungal species in arable fields in Sweden, Acta Agric. Scand. (Section B) 54: 202–212.

    Google Scholar 

  • Smith, S.E., and Read, D.J., 1997, Mycorrhizal Symbiosis, Academic Press, London.

    Google Scholar 

  • Smith, M.T.E., Cade-Menun, B.J., and Tibbett, M., 2006, Soil phosphorus dynamics and phytoavailability from sewage sludge at different stages in a treatment stream, Biol. Fertil. Soils 42: 186–197.

    Google Scholar 

  • Son, C.L., and Smith, S.E., 1988, Mycorrhizal growth responses: interactions between photon irradiance and phosphorus nutrition, New Phytol. 108: 305–314.

    Google Scholar 

  • Sreenivasa, M.N., and Bagyaraj, D.J., 1989, Use of pesticides for mass production of vesicular-arbuscular mycorrhizal inoculum, Plant Soil 119: 127–132.

    CAS  Google Scholar 

  • Stukenbrock, E.H., and Rosendahl, S., 2005, Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus spp.) studied by multilocus genotyping of single spores, Mol. Ecol. 14: 743–752.

    PubMed  CAS  Google Scholar 

  • Talukdar, N.C., and Germida, J.J., 1993, Occurrence and isolation of vesicular-arbuscular mycorrhizae in cropped field soils of Saskatchewan, Canada, Can. J. Microbiol. 39: 567–575.

    Google Scholar 

  • Tarafdar, J.C., and Marschner, H., 1994, Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus, Soil Biol. Biochem. 26: 387–395.

    CAS  Google Scholar 

  • Tawaraya, K., Naito, M., and Wagatsuma, T., 2006, Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi, J. Plant Nutr. 29: 657–665.

    CAS  Google Scholar 

  • Thompson, J.P., 1987, Decline of vesicular-arbuscular mycorrhizas in long fallow disorder of field crops and its expression in phosphorus deficiency in sunflower, Aust. J. Agric. Res. 38: 847–867.

    CAS  Google Scholar 

  • Thompson, J.P., and Wildermuth, G.B., 1989, Colonisation of crop and pasture species with vesicular-arbuscular mycorrhizal fungi and infection by Bipolaris sorokiniana, Can. J. Bot. 67: 687–693.

    Google Scholar 

  • Thompson, J.P., 1990, Soil sterilisation methods to show VA-mycorrhizae aid P and Zn nutrition of wheat in vertisols, Soil Biol. Biochem. 22: 229–240.

    CAS  Google Scholar 

  • Thompson, J.P., 1994, Inoculation with vesicular-arbuscular mycorrhizal fungi from cropped soil overcomes long-fallow disorder of linseed (Linum usitatissimum L.) by improving P and Zn uptake, Soil Biol. Biochem. 26: 1133–1143.

    CAS  Google Scholar 

  • Thompson, J.P., 1996, Correction of duel phosphorus and zinc deficiencies of linseed (Linum usitatissimum L.) with cultures of vesicular-arbuscular mycorrhizal fungi, Soil Biol. Biochem. 28: 941–951.

    CAS  Google Scholar 

  • Tibbett, M., and Cairney, J.W.G, 2007, The cooler side of mycorrhizas: their occurrence and functioning at low temperatures. Can. J. Bot. 85: 51–62.

    Google Scholar 

  • Tisdall, J.M., and Oades, J.M., 1979, Stabilization of soil aggregates by the root systems of ryegrass, Aust. J. Soil Res. 17: 429–441.

    Google Scholar 

  • Trinick, M.J., 1977, Vesicular-arbuscular infection and soil phosphorus utilisation in Lupinus spp., New Phytol. 78: 297–304.

    CAS  Google Scholar 

  • Troeh, Z.I., and Loynachan, T.E., 2003, Endomycorrhizal fungal survival in continuous corn, soybean and fallow, Agron. J. 95: 224–230.

    Google Scholar 

  • Udaiyan, K., Greep, S., Mithukumar T., and Chitra, A., 1999, Effect of fumigation and pesticide drenches on VAM status and growth in cereals, J. Environ. Bot. 20: 167–175.

    CAS  Google Scholar 

  • van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., and Sanders, I.R., 1998, Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity, Nature 396: 69–72.

    Google Scholar 

  • van der Heijden, E.W., 2001, Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens, Mycorrhiza 10: 185–193.

    Google Scholar 

  • van Diepeningen, A.D., de Vos, O.J., Korthals, G.W., and van Bruggen, A.H.C., 2006, Effects of organic versus conventional management on chemical and biological parameters in agricultural soils, Appl. Soil Ecol. 31: 120–135.

    Google Scholar 

  • Watson, C.A., Atkinson, D., Gosling, P., Jackson, L.R., and Rayns, F.W., 2002, Managing soil fertility in organic farming systems, Soil Use Manage. 18: 239–247.

    Google Scholar 

  • Weber, E., Saxena, M.C., George, E., and Marschner, H., 1993, Effect of vesicular-arbuscular mycorrhiza on vegetative growth and harvest index of chickpea grown in northern Syria, Field Crop Res. 32: 115–128.

    Google Scholar 

  • Werner, M.R., Kluson, R.A., and Gliessman, S.R., 1990, Colonisation of strawberry roots by VA mycorrhizal fungi in agroecosystems under conventional and transitional organic management, Biol. Agric. Hortic. 7: 139–151.

    Google Scholar 

  • Werner, M., 1997, Soil quality characteristics during conversion to organic orchard management, Appl. Soil Ecol. 5: 151–167.

    Google Scholar 

  • Whipps, J.M., 2004, Prospects and limitations for mycorrhizas in biocontrol of root pathogens, Can. J. Bot. 82: 1198–1227.

    Google Scholar 

  • Wright, S.F., and Upadhyaya, A., 1998, A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi, Plant Soil 198: 97–107.

    CAS  Google Scholar 

  • Wright, S.F., Starr, J.L., and Paltineau, I.C., 1999, Changes in aggregate stability and concentration of glomalin during tillage management transition, Soil Sci. Soc. Am. J. 63: 1825–1829.

    CAS  Google Scholar 

  • Wright, S.F., and Anderson, R.L., 2000, Aggregate stability and glomalin in alternative crop rotations for the central Great Plains, Biol. Fertil. Soils 31: 249–253.

    CAS  Google Scholar 

  • Xavier, L.J.C., and Germida, J.J., 1997, Growth response of lentil and wheat to Glomus clarum NT4 over a range of P levels in a Saskatchewan soil containing indigenous AM fungi, Mycorrhiza 7: 3–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ryan, M.H., Tibbett, M. (2009). The Role of Arbuscular Mycorrhizas in Organic Farming. In: Kirchmann, H., Bergström, L. (eds) Organic Crop Production – Ambitions and Limitations. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9316-6_10

Download citation

Publish with us

Policies and ethics