Skip to main content

Bacterioplankton

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Aquatic bacteria

Definition

Bacterial component of the plankton that drifts in the water column of both seawater and freshwater ecosystems.

Introduction

The name bacterioplankton comes from the association of the Greek word πλαγκτος  “planktós,” meaning “wanderer” or “drifter,” and bacterium, a word coined in the nineteenth century by Christian Gottfried Ehrenberg (Thurman, 1997). In contrast to land, microbes drive the ecology of the aquatic environments both as producers and consumers of fixed carbon. Their colossal biomass vastly outreaches the ones of all other members of the oceanic and freshwaters biota. Considering its size, the Ocean encompasses more bacteria than the count of known stars (estimated to 1021) in the Universe. Though its role in aquatic ecosystems was for long eluded, the bacterioplankton carries out the largest fraction of the biological activity and occupies a range of ecological niches.

Enumeration and description

Since the beginning of microbiology,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Acinas, S. G., Anton, J., and Rodriguez-Valera, F., 1999. Diversity of free-living and attached bacteria in offshore western mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Applied and Environmental Microbiology, 65, 514–522.

    Google Scholar 

  • Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., and Stahl, D. A., 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiology, 56, 1919–1925.

    Google Scholar 

  • Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10, 257–263.

    Article  Google Scholar 

  • Beja, O., Spudich, E. N., Spudich, J. L., Leclerc, M., and DeLong, E. F., 2001. Proteorhodopsin phototrophy in the ocean. Nature, 411, 786–789.

    Article  Google Scholar 

  • Chin-Leo, G., and Kirchman, D. L., 1988. Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine. Applied and Environmental Microbiology, 54, 1934–1939.

    Google Scholar 

  • Cottrell, M. T., and Kirchman, D. L., 2000. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Applied and Environmental Microbiology, 66, 5116–5122.

    Article  Google Scholar 

  • del Giorgio, P. A., and Duarte, C. M., 2002. Respiration in the open ocean. Nature, 420, 379–384.

    Article  Google Scholar 

  • Eilers, H., Pernthaler, J., Peplies, J., Glockner, F. O., Gerdts, G., and Amann, R., 2001. Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Applied and Environmental Microbiology, 67, 5134–5142.

    Article  Google Scholar 

  • Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hogberg, P., Linder, S., Mackenzie, F. T., Moore, B. III, Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., and Steffen, W., 2000. The global carbon cycle: a test of our knowledge of earth as a system. Science, 290, 291–296.

    Article  Google Scholar 

  • Fenchel, T., King, G. M., and Blackburn, T. H., 1998. Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling. London: Academic.

    Google Scholar 

  • Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., et al., 1980. The phylogeny of prokaryotes. Science, 209, 457–463.

    Article  Google Scholar 

  • Fuhrman, J. A., and Azam, F., 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Marine Biology, 66, 109–120.

    Article  Google Scholar 

  • Fuhrman, J. A., Ferguson, R. I., 1986. Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: agreement between chemical and microbiological measurements. Marine Ecology Progress Series, 33, 237–242.

    Article  Google Scholar 

  • Giovannoni, S. J., Rappé, M. S., Vergin, K. L., and Adair, N. L., 1996. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the green non-sulfur bacteria. Proceedings of the National Academy of Sciences of the United States of America, 93, 7979–7984.

    Article  Google Scholar 

  • González, J. M., and Moran, M. A., 1997. Numerical dominance of a group of marine bacteria in the alpha-subclass of the class proteobacteria in coastal seawater. Applied and Environmental Microbiology, 63, 4237–4242.

    Google Scholar 

  • Gordon, D. A., and Giovannoni, S. J., 1996. Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific Oceans. Applied and Environmental Microbiology, 62, 1171–1177.

    Google Scholar 

  • Hagström, Å., Larsson, U., Hörstedt, P., and Normark, S., 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Applied and Environmental Microbiology, 37, 805–812.

    Google Scholar 

  • Hobbie, J. E., Daley, R. J., and Jasper, S., 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology, 33, 1225–1228.

    Google Scholar 

  • Hollibaugh, J. T., Bano, N., and Ducklow, H. W., 2002. Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrospira-like ammonia-oxidizing bacteria. Applied and Environmental Microbiology, 68, 1478–1484.

    Article  Google Scholar 

  • Hoppe, H. G., 1976. Determination and properties of actively metabolizing heterotrophic bacteria in the sea, investigated by means of micro-autoradiography. Marine Biology, 36, 291–302.

    Article  Google Scholar 

  • Jannasch, H. W., and Jones, G. E., 1959. Bacterial populations in sea water as determined by different methods of enumeration. Limnology and Oceanography, 4, 128–139.

    Article  Google Scholar 

  • Kjelleberg, S., Hermansson, M., Mården, P., and Jones, G. W., 1987. The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annual Review of Microbiology, 41, 25–49.

    Article  Google Scholar 

  • Kogure, K., Simidu, U., and Taga, N., 1979. A tentative direct microscopic method for counting living marine bacteria. Canadian Journal of Microbiology, 25, 415–420.

    Article  Google Scholar 

  • Larsson, U., and Hagström, Å., 1979. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Marine Biology, 52, 199–206.

    Article  Google Scholar 

  • Morris, R. M., Rappé, M. S., Connon, S. A., Vergin, K. L., Siebold, W. A., Carlson, C. A., and Giovannoni, S. J., 2002. SAR11 clade dominates ocean surface bacterioplankton communities. Nature, 420, 806–810.

    Article  Google Scholar 

  • Pernthaler, A., Pernthaler, J., and Amann, R. I., 2002. Fluorescent in situ hybridizarion and catalyzed reporter deposition for the identification of marine bacteria. Applied and Environmental Microbiology, 68, 3094–3101.

    Article  Google Scholar 

  • Pinhassi, J., and Hagstrom, A., 2000. Seasonal succession in marine bacterioplankton. Aquatic Microbial Ecology, 21, 245–256.

    Article  Google Scholar 

  • Pinhassi, J., Winding, A., Binnerup, S., Zweifel, U. L., Riemann, B., and Hagström, Å., 2003. Spatial variability in bacterioplankton community composition at the Skagerrak-Kattegat Front. Marine Ecology Progress Series, 255, 1–13.

    Article  Google Scholar 

  • Pommier, T., Canbäck, B., Riemann, L., Boström, H. K., Lundberg, P., Tunlid, A., and Hagström, Å., 2007. Global patterns of diversity and community structure in marine bacterioplankton. Molecular Ecology, 16, 867–880.

    Article  Google Scholar 

  • Proctor, L. M., and Fuhrman, J. A., 1990. Viral mortality of marine bacteria and cyanobacteria. Nature, 343, 60–62.

    Article  Google Scholar 

  • Rappé, M. S., Connon, S. A., Vergin, K. L., and Giovannoni, S. J., 2002. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature, 418, 630–633.

    Article  Google Scholar 

  • Riemann, L., Steward, G. F., and Azam, F., 2000. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Applied and Environmental Microbiology, 66, 578–587.

    Article  Google Scholar 

  • Sabehi, G., Loy, A., Jung, K. H., Partha, R., Spudich, J. L., Isaacson, T., Hirschberg, J., Wagner, M., and Beja, O., 2005. New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLOS Biology, 3, 1409–1417.

    Article  Google Scholar 

  • Salomon, P. S., Janson, S., and Granéli, E., 2003. Molecular identification of bacteria associated with filaments of Nodularia spumigena and their effect on the cyanobacterial growth. Harmful Algae, 2, 261–272.

    Article  Google Scholar 

  • Smith, E. M., and del Giorgio, P. A., 2003. Low fractions of active bacteria in natural aquatic communities? Aquatic Microbial Ecology, 31, 203–208.

    Article  Google Scholar 

  • Smith, D. C., Simon, M., Alldredge, A. L., and Azam, F., 1992. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature, 359, 139–142.

    Article  Google Scholar 

  • Stevenson, B. S., and Schmidt, T. M., 1998. Growth rate-dependent accumulation of RNA from plasmid-borne rRNA operons in Escherichia coli. Journal of Bacteriology, 180, 1970–1972.

    Google Scholar 

  • Suzuki, M. T., Preston, C. M., Chavez, F. P., and Delong, E. F., 2001. Quantitative mapping of bacterioplankton populations in seawater: field tests across an upwelling plume in Monterey bay. Aquatic Microbial Ecology, 24, 117–127.

    Article  Google Scholar 

  • Tabor, P. S., and Neihof, R. A., 1984. Direct determination of activities for microorganisms of Chesapeake bay populations. Applied and Environmental Microbiology, 48, 1012–1019.

    Google Scholar 

  • Thurman, H. V., 1997. Introductory Oceanography. New Jersey, USA: Prentice Hall College. ISBN 0132620723.

    Google Scholar 

  • Vacelet, E., 1972. Generation time measured in minutes for marine bacteria. Comptes rendus hebdomadaires des séances de l’Académie des sciences. Série D: Sciences naturelles, 274, 2083–2085.

    Google Scholar 

  • Woese, C. R., 1987. Bacterial evolution. Microbiological Reviews, 51, 221–271.

    Google Scholar 

  • Woese, C. R., Stackebrandt, E., Macke, T. J., and Fox, G. E., 1985. A phylogenetic definition of the major eubacterial taxa. Systematic and Applied Microbiology, 6, 143–151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Pommier, T. (2011). Bacterioplankton. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_18

Download citation

Publish with us

Policies and ethics