Skip to main content

Aging, Cancer and Apoptosis in Animal Models and Clinical Settings

  • Chapter
Handbook on Immunosenescence

The incidence of cancer generally increases with aging of hosts in both animals and humans [39, 49], and thus advanced age is, so to say, a most powerful and potent carcinogen. In humans, the overall incidence of cancer rises exponentially in the 6th, 7th and 8th decades of life [45]. Although it is not clear what underlies this close link between cancer and advanced age, it is believed that the cancer-prone phenotype of aged people is due to the cumulative mutational load over a person’s lifetime. In other words, the high frequency of cancer in older individuals simply reflects a more prolonged exposure to various carcinogenic events [12]. Analysis of the frequency of human cancer as a function of age shows that between 4 and 7 mutations in key genes are usually necessary to produce cancers. However, it is still under debate whether normal mutation rates followed by the selective advantage of mutated clones are enough to produce the numerous mutations found in human cancers [106]. But, by whatever means, cancers might be caused by genetic/epigenetic alterations. Even under physiological conditions, the stem cells of our body may contain multiple somatic mutations, some of which target cancer-relevant genes [113]. For example, 1% of neonatal blood samples contain significant numbers of myeloid clones harboring oncogenic fusion of chromosomes [90] and 1/3 of adults possess detectable IgH-BCL2 translocations associated with follicular lymphoma [85]. Thus, our body’s cells experience multiple routes for oncogenesis every day. However, not so many people are affected by cancer. This may be partly because we have adequate systems that suppress carcinogenesis and constrain the growth and survival of potential cancer cells. In humans, tumor suppressor systems include the p16-Rb, ARF-p53 and telomere systems. Some of these systems protect the genome from damage or mutation. Others eliminate or arrest the proliferation of potential cancer cells by processes called apoptosis or cellular senescence. The Rb system induces cell cycle arrest and p53 and telomere dysfunction, which in turn induce apoptosis in abnormal cells. Furthermore, the immune system influences various aspects of tumor growth and metastasis [48], although there is no conclusive evidence of an immune surveillance system for carcinogenesis in humans [38].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham MC, Shaham S (2004) Death without caspases, caspases without death. Trends Cell Biol 14:184–193

    Article  PubMed  CAS  Google Scholar 

  2. Ahuja N, Li Q, Mohan AL, Baylin SB, Issa J-P (1998) Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res 58:5489–5494

    PubMed  CAS  Google Scholar 

  3. Ambinder RF (2003) Epsten-Barr virus-associate lymphoproliferative disorders. Rev Clin Exp Hematol 7:362–374

    PubMed  Google Scholar 

  4. Ania BJ, Suman VJ, Fairbanks VF, Rademacher DM, Melton LJ 3rd (1997) Incidence of anemia in older people: an epidemiologic study in a well defined population. J Am Geriatr Soc 45:825–831

    PubMed  CAS  Google Scholar 

  5. Anisimov VN, Turusov VS (1981) Modifying effect of aging on chemical carcinogenesis. A review. Mech Ageing Dev 15:399–414

    Article  PubMed  CAS  Google Scholar 

  6. Anisimov VN (1982) Carcinogenesis and ageing—III. The role of age in initiation and promotion of carcinogenesis. Exp Pathol 22:131–147

    PubMed  CAS  Google Scholar 

  7. Anisimov VN (1983) Carcinogenesis and aging. Adv Cancer Res 40:365–424

    Article  PubMed  CAS  Google Scholar 

  8. Anisimov VN, Prokudina EA (1986) Carcinogenesis and ageing—VII. Carcinogenic effect of single total-body X-ray irradiation in young and old female rats. Exp Pathol 29:165–171

    PubMed  CAS  Google Scholar 

  9. Anisimov VN (2001) Mutant and genetically modified mice as models for studying the relationship between aging and carcinogenesis. Mech Ageing Dev 122:1221–1255

    Article  PubMed  CAS  Google Scholar 

  10. Anisimov VN, Ukraintseva SV, Yashin AI (2005) Cancer in rodents: does it tell us about cancer in humans? Nat Rev Cancer 5:807–819

    Google Scholar 

  11. Anisimov VN, Popovich IG, Zabezhinski MA, Anisimov SV, Vesnushkin GM, Vinogradova IA (2006) Melatonin as antioxidant, geroprotector and anticarcinogen. Biochem Biophys Acta 1757:573–589

    Article  PubMed  CAS  Google Scholar 

  12. Anisimov VN (2007) Biology of aging and cancer. Cancer Control 14:23–31

    PubMed  Google Scholar 

  13. Arai T, Murata T, Sawabe M, Takubo K, Esaki Y (1999) Primary adenocarcinoma of the duodenum in the elderly: clinicopathological and immunohistochemical study of 17 cases. Pathol Int 49:23–29

    Article  PubMed  CAS  Google Scholar 

  14. Arai T, Takubo K, Sawabe M, Esaki Y (2000) Pathologic characteristics of colorectal cancer in the elderly. J Clin Gastroenterol 31:67–72.

    Article  PubMed  CAS  Google Scholar 

  15. Arai T, Sawabe M, Takubo K, Kanazawa K, Esaki Y (2001) Multiple colorectal cancers in the elderly: a retrospective study of both surgical and autopsy cases. J Gastroenterol 36:748–752

    Article  PubMed  CAS  Google Scholar 

  16. Arai T, Takubo K (2007) Clinicopathological and molecular characteristics of gastric and colorectal carcinomas in the elderly. Pathol Int 57:303–314

    Article  PubMed  CAS  Google Scholar 

  17. Arai T, Esaki Y, Sawabe M, Nonma N, Nakamira K, Takubo K (2004) Hypermethylation of the hMLH1 promotor with absent hMLH1 expression in medullary-type poorly differentiated colorectal adenocarcinoma in the elderly. Mod Pathol 17:172–179

    Article  PubMed  CAS  Google Scholar 

  18. Artandi SE, Chang S, Lee SL, Alson S, Gottlieb GJ, Chin L, DePinho RA (2000) Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nat 406:641–645

    Article  CAS  Google Scholar 

  19. Artandi SE, Alson S, Tietze MK, Sharpless NE, Ye S, Greenberg RA, Gastrillon DH, Horner JW, Weiler SR, Carrasco RD, DePinho RA (2002) Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc Natl Acad Sci U S A 99:8191–8196

    Article  PubMed  CAS  Google Scholar 

  20. Baker DG (1997) Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clin Microbiol Rev 11:231–266

    Google Scholar 

  21. Balducci L, Wallace C, Khansur T, Vance RB, Thigpen JT, Hardy C (1986) Nutrition, cancer, and aging: an annotated review. I. Diet, carcinogeneis, and aging. J Am Geriatr Soc 34:127–136

    PubMed  CAS  Google Scholar 

  22. Balducci L, Hardy CL, Lyman GH (2001) Hematopoietic growth factors in the older cancer patient. Curr Opin Hematol 8:170–187

    Article  PubMed  CAS  Google Scholar 

  23. Balducci L (2003) Anemia, cancer, and aging. Cancer Control 10:478–486

    PubMed  Google Scholar 

  24. Bangham CR (2003) Human T-lymphotropic virus type 1 (HTLV-1): persistence and immune control. Int J Hematol 78:297–303

    Article  PubMed  Google Scholar 

  25. Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis. Trends Genet 16:168–174

    Article  PubMed  CAS  Google Scholar 

  26. Berneburg M, Kamenisch Y, Krutmann J, Rocken M (2006) To repair or not to repair—no longer a question: repair of mitochondrial DNA shielding against age and cancer. Exp Dermatol 15:1005–1015

    Article  PubMed  CAS  Google Scholar 

  27. Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402

    Article  PubMed  CAS  Google Scholar 

  28. Birch-Machin MA (2006) The role of mitochondria in aging and carcinogenesis. Clin Exp Dermatol 31:548–552

    Article  PubMed  CAS  Google Scholar 

  29. Burns EA, Leventhal EA (2000) Aging, immunity, and cancer. Cancer Control 7:513–522

    PubMed  CAS  Google Scholar 

  30. Caldas C, Brenton JD (2005) Sizing up miRNAs as cancer genes. Nat Med 11:712–714

    Article  PubMed  CAS  Google Scholar 

  31. Campisi J (2005) Senescent cells, tumor suppression, and organism aging: good citizens, bad neighbors. Cell 120:513–522

    Article  PubMed  CAS  Google Scholar 

  32. Campisi J (2005) Suppressing cancer: the importance of being senescent. Science 309:886–887

    Article  PubMed  CAS  Google Scholar 

  33. Cao L, Li W, Kim S, Brodie SG, Deng C-X (2003) Senescence, aging, and malignant transformation mediated by p53 in mice lacking Brca1 full-length isoform. Genes Dev 17:201–213

    Article  PubMed  CAS  Google Scholar 

  34. Chen L, Lee L, Kudlow BA, Dos Santos HG, Sletvoid O, Shafeghati Y, Botha EG, Garg A, Hanson NB, Martin GM, Mian IS, Kennedy BK, Oshima J (2003) LMNA mutaions in atypical Werner’s syndrome. Lancet 362:440–445

    Article  PubMed  CAS  Google Scholar 

  35. Chesebro B, Miyazawa M, Britt WJ (1990) Host genetic control of spontaneous and induced immunity to Friend murine retrovirus infection. Ann Rev Immunol 8:477–499

    Article  CAS  Google Scholar 

  36. Cinader B, Van Der Gaag HC, Koh SW, Axelrad AA (1987) Friend virus replication as a function of age. Mech Ageing Dev 40:181–191

    Article  PubMed  CAS  Google Scholar 

  37. Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspaseindependent cell death. Oncogene 23:2785–2796

    Article  PubMed  CAS  Google Scholar 

  38. Cui Z, Willingham MC (2004) The effect of aging on cellular immunity against cancer in SR/CR mice. Cancer Immunol Immunother 53:473–478

    Article  PubMed  Google Scholar 

  39. Denduluri N, Ershler WB (2004) Aging biology and cancer. Semin Oncol 31:137–148

    Article  PubMed  Google Scholar 

  40. DePinho RA (2000) The age of cancer. Nature 408:248–254

    Article  PubMed  CAS  Google Scholar 

  41. Donovan M, Cotter TG (2004) Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochem Biophys Acta 1644:133–147

    Article  PubMed  CAS  Google Scholar 

  42. Doria G, Biozzi G, Mouton D, Covelli V (1997) Genetic control of immune responsiveness, aging and tumor incidence. Mech Ageing Dev 96:1–13

    Article  PubMed  CAS  Google Scholar 

  43. Duker NJ (2002) Chromosome breakage syndromes and cancer. Am J Med Genet 115:125–129

    Article  PubMed  Google Scholar 

  44. Ebbesen P (1984) Cancer and normal ageing. Mech Ageing Dev 25:269–283

    Article  PubMed  CAS  Google Scholar 

  45. Edwards BK, Howe HL, Ries LA, Thun MJ, Rosenberg HM, Yancik R, Wingo PA, Jemal A, Feigal EG (2002) Annual report to the nation on the status of cancer, 1973–1999, featuring implications of age and aging on U.S. cancer burden. Cancer 94:2766–2792

    Article  PubMed  Google Scholar 

  46. Endo T, Abe S, Seidler HBK, Nagaoka S, Takemura T, Utsuyama M, Kitagawa M, Hirokawa K (2004) Expression of IAP family proteins in colorectal cancer in different age groups. Cancer Immunol Immunother 53: 770–776

    Article  PubMed  CAS  Google Scholar 

  47. Ershler WB (1992) Explanations for reduced tumor proliferative capacity with age. Exp Gerontol 27:551–558

    Article  PubMed  CAS  Google Scholar 

  48. Ershler WB (1993) The influence of an aging immune system on cancer incidence and progression. J Gerontol 48:B3–B7

    PubMed  CAS  Google Scholar 

  49. Ershler WB, Longo DL (1997) Aging and cancer: issues of basic and clinical science. J Natl Cancer Inst 89:1489–1497

    Article  PubMed  CAS  Google Scholar 

  50. Esaki Y, Hirokawa K, Yamashiro M (1987) Multiple gastric cancers in the aged. Cancer 59:560–565

    Article  PubMed  CAS  Google Scholar 

  51. Esaki Y, Hirayama R, Hirokawa K (1990) A comparison of patterns of metastasis in gastric cancer, compared by histologic type and age. Cancer 65:2086–2090

    Article  PubMed  CAS  Google Scholar 

  52. Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229

    PubMed  CAS  Google Scholar 

  53. Gardner MB (1993) Genetic control of retroviral disease in aging wild mice. Genetica 91:199–209

    Article  PubMed  CAS  Google Scholar 

  54. Gems D, Partridge L (2001) Insulin/IGF signaling and ageing seeing the bigger picture. Curr Opin Genet Dev 11:287–292

    Article  PubMed  CAS  Google Scholar 

  55. Goto M, Rubenstein M, Weber J, Drayana D (1992) Genetic linkage of Werner’s syndrome to five markers on chromosome 8. Nature 355:735–738

    Article  PubMed  CAS  Google Scholar 

  56. Goto M, Miller RW, Ishikawa Y, Sugano H (1996) Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev 5:239–246

    PubMed  CAS  Google Scholar 

  57. Goto M (1997) Hierarchical deterioration of body systems in Werner’s syndrome: implications for normal ageing. Mech Ageing Dev 98:239–254

    Article  PubMed  CAS  Google Scholar 

  58. Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    Article  PubMed  CAS  Google Scholar 

  59. Habuchi T, Takahashi T, Kaminuma H, Wang L, Tsuchiya N, Satoh S, Akao T, Sato K, Ogawa O, Knowles MA, Kato T (2001) Hypermethylation at 9q32–33 tumour suppressor region is age-related in normal urothelium and an early and frequent alteration in bladder cancer. Oncogene 20:531–537

    Article  PubMed  CAS  Google Scholar 

  60. Hahn WC, Weinberg RA (2002) Modeling the molecular circuitry of cancer. Nat Rev Cancer 2:331–341

    Article  PubMed  CAS  Google Scholar 

  61. Hamerman D, Merman JW, Albers GW, Brown DL, Silver D (1999) Emerging evidence for inflammation in conditions frequently affecting older adults: report of a symposium. J Am Geriatr Soc 47:1016–1025

    PubMed  CAS  Google Scholar 

  62. Hammond SM (2006) MicroRNA as oncogenes. Curr Opin Genet Dev 16:4–9

    Article  PubMed  CAS  Google Scholar 

  63. Harada Y, Shiomi N, Koike M, Ikawa M, Okabe M, Hirota S, Kitamura Y, Kitagawa M, Matsunaga T, Nikaido O, Shiomi T (1999) Postnatal growth failure, short life span, and early onset of cellular senescence and subsequent immortaliztion in mice lacking the xeroderma pigmentosum group G gene. Mol Cell Biol 19:2366–2372

    PubMed  CAS  Google Scholar 

  64. Higami Y, Shimokawa I (2000) Apoptosis in the aging process. Cell Tissue Res 301:125–132

    Article  PubMed  CAS  Google Scholar 

  65. Hirokawa K, Utsuyama M, Goto H, Kuramoto K (1984) Differential rate of age-related decline in immune functions in genetically defined mice with different tumor incidence and life span. Gerontol 30:223–233

    Article  CAS  Google Scholar 

  66. Hirokawa K (1992) Understanding the mechanism of the age-related decline in immune function. Nutr Rev 50:361–366

    PubMed  CAS  Google Scholar 

  67. Hirokawa K (1998) Immunity and Ageing. In: Principle and Practice of Geriatric Medicine Pathy MSJ [ed], John Wiley & Son UK, pp35–47

    Google Scholar 

  68. Hirokawa K (1999) Age-related changes of signal transduction in T cells. Exp Gerontol 34:7–18

    Article  PubMed  CAS  Google Scholar 

  69. Inoshita N, Yanagishita A, Arai T, Kitagawa T, Hirokawa K, Kato Y (1998) Pathological characteristics of gastric carcinomas in the very old. Jpn J Cancer Res 89:1087–1092

    PubMed  CAS  Google Scholar 

  70. Ishikawa Y, Sugano H, Matsumoto T, Furuichi Y, Miller RW, Goto M (1999) Unusual features of thyroid carcinomas in Japanese patients with Werner syndrome and possible genotype- phenotype relations to cell type and race. Cancer 85:1345–1352

    Article  PubMed  CAS  Google Scholar 

  71. Ishikawa Y, Miller RW, Machinami R, Sugano H, Goto M (2000) Atypical osteosarcomas in Werner syndrome (adult progeria). Jpn J Cancer Res 91:1345–1349

    PubMed  CAS  Google Scholar 

  72. Issa J-P, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB (1994) Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 7:536–540

    Article  PubMed  CAS  Google Scholar 

  73. Issa J-P, Ahuja N, Toyota M, Bronner MP, Brentnall TA (2001) Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61:3573–3577

    PubMed  CAS  Google Scholar 

  74. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163–167

    Article  PubMed  CAS  Google Scholar 

  75. Jubb AM, Bell SM, Quirke P (2001) Methylation and colorectal cancer. J Pathol 195:111–134

    Article  PubMed  CAS  Google Scholar 

  76. Kaesberg PR, Ershler WB (1989) The importance of immunosenescence in the incidence and malignant properties of cancer in hosts of advanced age. J Gerontol 44:63–66

    Article  PubMed  CAS  Google Scholar 

  77. Kaplan HS, Brown MB, Paull J (1953) Influence of bone marrow injections in involution and neoplasia of mouse thymus after systemic irradiation. J Natl Cancer Inst 14:303–316

    PubMed  CAS  Google Scholar 

  78. Killion JJ, Radinsky R, Dong Z, Fishbeck R, Whitworth P, Fidler IJ (1993) The immunogenic properties of drug-resistant murine tumor cells do not correlate with expression of the MDR phenotype. Cancer Immunol Immunother 36:381–386

    Article  PubMed  CAS  Google Scholar 

  79. Kirschner M, Pujol G, Radu A (2002) Oligonucleotide microarray data mining: search for age-dependent gene expression. Biochem Biophys Res Commun 298:772–778.

    Article  PubMed  CAS  Google Scholar 

  80. Kitagawa M, Matsubara O, Kasuga T (1986) Dynamics of lymphocytic subpopulations in Friend leukemia virus-induced leukemia. Cancer Res 46:3034–3039

    PubMed  CAS  Google Scholar 

  81. Kitagawa M, Kamisaku H, Sado T, Kasuga T (1993) Friend leukemia virus-induced leukemogenesis in fully H-2 incompatible C57BL6 ??C3H radiation bone marrow chimeras. Leukemia 7:1041–1046

    PubMed  CAS  Google Scholar 

  82. Kitagawa M, Saito I, Kuwata T, Yoshida S, Yamaguchi S, Takahashi M, Tanizawa T, Kamiyama R, Hirokawa K (1997) Overexpression of tumor necrosis factor (TNF)-?; and interferon (IFN)-?; by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 11:2049–2054

    Article  PubMed  CAS  Google Scholar 

  83. Kitagawa M, Yamaguchi S, Takahashi M, Tanizawa T, Hirokawa K, Kamiyama R (1998) Localization of Fas and Fas ligand in bone marrow cells demonstrating myelodysplasia. Leukemia 12:486–492

    Article  PubMed  CAS  Google Scholar 

  84. Kitagawa M, Takahashi M, Yamaguchi S, Inoue M, Ogawa S, Hirokawa K, Kamiyama R (1999) Expression of inducible nitric oxide synthase (NOS) in bone marrow cells of myelodysplastic syndromes. Leukemia 13:699–703

    Article  PubMed  CAS  Google Scholar 

  85. Liu Y, Hernandez AM, Shibata D, Cortopassi GA (1994) BCL2 translocation frequency rises with age in humans. Proc Natl Acad Sci U S A 91:8910–8914

    Article  PubMed  CAS  Google Scholar 

  86. Lyon MF (1999) X-chromosome inactivation. Curr Biol 9:R235–R237

    Article  PubMed  CAS  Google Scholar 

  87. Macieira-Coelho A (2003) The decline of the clinical incidence of cancers during human senescence. Grontology 49:341–349

    Article  Google Scholar 

  88. Maffini MV, Calabro JM, Soto AM, Sonnenschein C (2005) Stromal regulation of neoplastic development: age-dependent normalization of neoplastic mammary cells by mammary stroma. Am J Pathol 167:1405–1410

    PubMed  Google Scholar 

  89. Miller RA (1991) Gerontology as oncology. Research on aging as the key to the understanding of cancer. Cancer 68 (11 Suppl):2496–2501

    Google Scholar 

  90. Mori H, Colman SM, Xiao Z, Ford AM, Healy LE, Donaldson C, Hows JM, Navarrete C, Greaves M (2002) Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci U S A 99:8242–8247

    Article  PubMed  CAS  Google Scholar 

  91. Mueller N (1987) Epidemiologic studies assessing the role of the Epstein-Barr virus in Hodgkin’s disease. Yale J Biol Med 60:321–332

    PubMed  CAS  Google Scholar 

  92. Nagaoka, S, Shiraishi J, Utsuyama M, Seki S, Takemura T, Kitagawa M, Sawabe M, Takubo K, Hirokawa K (2003) Poor prognosis of colorectal cancer in patients over 80 years old is associated with down-regulation of tumor suppressor genes. J Clin Gastroenterol 37:48–54

    Article  PubMed  CAS  Google Scholar 

  93. Nakajima T, Akiyama Y, Shiraishi J, Arai T, Yanagisawa Y, Arai M, Fukuda Y, Sawabe M, Satoh K, Kamiyama R, Hirokawa K, Yuasa Y (2001) Age-related hypermethylation of the hMLH1 promotor in gastric cancers. Int J Cancer 94:208–211

    Article  PubMed  CAS  Google Scholar 

  94. Oakley EJ, Van Zand G (2007) Unraveling the complex regulation of stem cells: implications for aging and cancer. Leukemia 21:612–621

    PubMed  CAS  Google Scholar 

  95. Ogawa T, Kitagawa M, Hirokawa K (2000) Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech Ageing Dev 117: 57–68

    Article  PubMed  CAS  Google Scholar 

  96. O’Hagan RC, Chang S, Maser RS, Mohan R, Artandi SE, Chin L, DePinho RA (2002) Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2:149–155

    Article  PubMed  CAS  Google Scholar 

  97. Opresko PL, cheng WH, von Kobe C, Harrison JA, Bohr VA (2003) Werner syndrome and the function of the Werner protein: what they can teach us about the molecular aging process. Carcinogenesis 24:791–802

    Article  PubMed  CAS  Google Scholar 

  98. Parry DM, Mulvihill JJ, Miller RW, Berg K, Carter CL (1987) Strategies for controlling cancer through genetics. Cancer Res 47:6814–6817

    PubMed  CAS  Google Scholar 

  99. Pawelec G, Hirokawa K, Fulop T (2001) Altered T cell signalling in ageing. Mech Ageing Dev 122:1613–1637

    Article  PubMed  CAS  Google Scholar 

  100. Pawelec G, Barnett Y, Forsey R, Frasca D, Globerson A, McLeod J, Caruso C, Franceschi C, Fulop T, Gupta S, Mariani E, Mocchegiani E, Solana R (2002) T cells and aging, January 2002update. Front Biosci 7:d1056–d1183

    PubMed  CAS  Google Scholar 

  101. Pawelec G (2003) Tumour escape: antitumor effectors too much of a good thing? Cancer Immuno Immunother 53:262–274

    Article  CAS  Google Scholar 

  102. Pili R, Guo Y, Chang J, Nakanishi H, Martin GR, Passaniti A (1994) Altered angiogenesis underlying age-dependent changes in tumor growth. J Natl Cancer Inst 86:1303–1314

    Article  PubMed  CAS  Google Scholar 

  103. Pinto A, Filippi RD, Frigeri F, Corazzeli G, Normanno N (2003) Aging and the hematopoietic system. Crit Rev Oncol Hematol 48S:S3–S12

    Article  Google Scholar 

  104. Rangarajan A, Weinberg RA (2003) Comparative biology of mouse versus human cells: modeling human cancer in mice. Nature Rev Cancer 3:952–959

    Article  CAS  Google Scholar 

  105. Rodier F, Kim S-H, Nijjar T, Yaswen P, Campisi J (2005) Cancer and aging: the importance of telomeres in genome maintenance. Int J Biochem Cell Biol 37:977–990

    Article  PubMed  CAS  Google Scholar 

  106. Sarasin A (2003) An overview of the mutagenesis and carcinogenesis. Mutat Res 544:99–106

    Article  PubMed  CAS  Google Scholar 

  107. Sato K, Bloom ET, Hirokawa K, Makinodan T (1986) Increased susceptibility of old mice to plasmacytoma induction. J Gerontol 41:24–29

    PubMed  CAS  Google Scholar 

  108. Satoh M, Imai M, Sugimoto M, Goto M, Furuichi Y (1999) Prevalence of Werner’s syndrome heterozygotes in Japan. Lancet 353:1766

    Article  PubMed  CAS  Google Scholar 

  109. Satyanarayana A, Manns MP, Rudolph KL (2004) Telomeres and telomerase: a dual role in hepatocarcinogenesis. Hepatology 40:276–283

    Article  PubMed  CAS  Google Scholar 

  110. Sawanobori M, Yamaguchi S, Hasegawa M, Inoue M, Suzuki K, Kamiyama R, Hirokawa K, Kitagawa M (2003) Expression of TNF receptors and related signaling molecules in the bone marrow from patients with myelodysplastic syndromes. Leukemia Res, 27:583–591

    Article  CAS  Google Scholar 

  111. Seidler HBK, Utsuyama M, Nagaoka S, Takemura T, Kitagawa M, Hirokawa K (2004) Expression level of Wnt signaling components possibly influence the behavior of colorectal cancer in different age groups. Exp Mol Pathol 76:224–233

    Article  PubMed  CAS  Google Scholar 

  112. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNg and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    Article  PubMed  CAS  Google Scholar 

  113. Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113:160–168

    PubMed  CAS  Google Scholar 

  114. Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23:2919–2933

    Article  PubMed  CAS  Google Scholar 

  115. Shen J-C, Loeb LA (2001) Unwinding the molecular basis of the Werner syndrome. Mech Ageing Dev 122:921–944

    Article  PubMed  CAS  Google Scholar 

  116. Shinzato O, Ikeda S, Momita S, Nagata Y, Kamihira S, Nakayama E, Shiku H (1991) Semiquantitative analysis of integrated genomes of human T-lymphotropic virus type I in asymptomatic virus carriers. Blood 78:2082–2088

    PubMed  CAS  Google Scholar 

  117. Stewart SA, Weinberg RA (2006) Telomeres: cancer to human aging. Annu Rev Cell Dev Biol 22:531–557

    Article  PubMed  CAS  Google Scholar 

  118. Stutman O (1979) Spontaneous tumors in nude mice: effect of the viable yellow gene. Exp Cell Biol 47:129–135

    Article  PubMed  CAS  Google Scholar 

  119. Tanaka K, Nagaoka S, Takemura T, Arai T, Sawabe M, Takubo K, Sugihara K, Kitagawa M, Hirokawa K (2002) Incidence of apoptosis increases with age in colorectal cancer. Exp Gerontol 37:1469–1479

    Article  PubMed  CAS  Google Scholar 

  120. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa J-P (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96:8681–8686

    Article  PubMed  CAS  Google Scholar 

  121. Tsujimoto Y (2003) Cell death regulation by the Bcl-2 Protein family in the mitochondria. J Cell Physiol 195:158–167

    Article  PubMed  CAS  Google Scholar 

  122. Utsuyama M, Wakikawa A, Tamura T, Nariuchi H, Hirokawa K (1997) Impairment of signal transduction in T cells from old mice. Mech Ageing Dev 93:131–144

    Article  PubMed  CAS  Google Scholar 

  123. Utsuyama M, Hirokawa K (2003) Radiation-induced-thymic lymphoma occurs in young, but not in old mice. Exp Gerontol 74:319–325

    CAS  Google Scholar 

  124. Walter CA, Grabowski DT, Street KA, Conrad CC, Richardson A (1997) Analysis and modulation of DNA repair in aging. Mech Ageing Dev 98:203–222

    Article  PubMed  CAS  Google Scholar 

  125. Walter CA, Zhou ZQ, Manguino D, Ikeno Y, Reddick R, Nelson J, Intano G, Herbert DC, MaMahan CA, Hanes M (2001) Mutant and genetically modified mice as models for studying the relationship between aging and carcinogenesis. Ann N Y Acad Sci 928:132–140

    Article  PubMed  CAS  Google Scholar 

  126. Wang E (1997) Regulation of apoptosis resistance and ontogeny of age-dependent diseases. Exp Gerontol 32:471–484

    Article  PubMed  CAS  Google Scholar 

  127. Warner HR, Hodes RJ, Pocinki K (1997) What does cell death have to do with aging? Am J Geriatr Soc 45:1140–1146

    CAS  Google Scholar 

  128. Weindruch R (1989) Dietry restriction, tumors, and aging in rodents. J Gerontol 44:67–71

    PubMed  CAS  Google Scholar 

  129. Wong KK, Chang S, Weiler SR, Ganesan S, Chaudhuri J, Zhu C, Artandi SE, Rudolph KL, Gottlieb GJ, Chin L, Alt FW, DePinho RA (2000) Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet 26:85–88

    Article  PubMed  CAS  Google Scholar 

  130. Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP (1997) Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389:745–749

    Article  PubMed  CAS  Google Scholar 

  131. Yamaguchi S, Kitagawa M, Inoue M, Tejima Y, Kimura M, Aizawa S, Utsuyama M, Hirokawa K (2001) Role of lymphoid cells in age-related change of susceptibility to Friend leukemia virus-induced leukemia. Mech Ageing Dev 122: 219–232

    Article  PubMed  CAS  Google Scholar 

  132. Yamamoto K, Abe S, Nakagawa Y, Suzuki K, Hasegawa M, Inoue M, Kurata M, Hirokawa K, Kitagawa M (2004) Expression of IAP family proteins in myelodysplastic syndromes transforming to overt leukemia. Leuk Res 28:1203–1211

    Article  PubMed  CAS  Google Scholar 

  133. Yu CE, Oshim J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GD (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262

    Article  PubMed  CAS  Google Scholar 

  134. Yuasa Y (2002) DNA methylation in cancer and ageing. Mech Ageing Dev 123:1649–1654.

    Article  PubMed  CAS  Google Scholar 

  135. Zimmerman JA, Carter TH (1989) Altered cellular responses to chemical carcinogens in aged animals. J Gerontol 44:19–24

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kitagawa, M., Hirokawa, K. (2009). Aging, Cancer and Apoptosis in Animal Models and Clinical Settings. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook on Immunosenescence. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9063-9_57

Download citation

Publish with us

Policies and ethics