Skip to main content

Autoimmunity—Aging Mouse Model for Autoimmune Diseases

  • Chapter
Handbook on Immunosenescence

Abstract

Recent evidences suggest that the apoptotic pathway plays a central role in tolerazing T-cells to tissue-specific self-antigen, and may drive the age-related autoimmune phenomenon. Primary Sjögren’s syndrome (SS) is an autoimmune disorder characterized by lymphocytic infiltrates and destruction of the exocrine glands, and systemic production of autoantibodies to the ribonucleoprotein (RNP) particles SS-A/Ro and SS-B/La. It can be considered that a defect in activation induced cell death (AICD) of effector T-cells may result in the progression of autoimmune exocrinopathy in SS. We found that aging-associated disturbances in T-cell homeostasis are accelerated in the animal model with SS, resulting in the development of extraglandular manifestation including autoimmune arthritis and interstitial pneumonia. We demonstrated that tissue-specific apoptosis may contribute to autoantigen cleavage, leading to the age-related acceleration of autoimmune exocrinopathy. The immune system undergoes profound changes with advancing age that are beginning to be understood and that need to be incorporated into the pathogenesis of SS. The studies reviewed the molecular mechanisms on aging-associated progression in animal model of autoimmune exocrinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augstein P et al (1998) Apoptosis and beta-cell destruction in pancreatic islets of NOD mice with spontaneous and cyclophosphamide-accelerated diabetes. Diabetologia 41:1381–1388

    Article  PubMed  CAS  Google Scholar 

  2. Bardos T et al (2002) Mice lacking endogenous major histocompatibility complex class II develop arthritis resembling psoriatic arthritis at an advanced age. Arthritis Rheum 46:2465–2475

    Article  PubMed  CAS  Google Scholar 

  3. Bieganowska KD et al (1997) Direct ex vivo analysis of activated, Fas-sensitive autoreactive T cells in human autoimmune disease. J Exp Med 185:1585–1594

    Article  PubMed  CAS  Google Scholar 

  4. Brunner T et al (1995) Cell-autonomous Fas(CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T cell hybridomas. Nature 373:441–444

    Article  PubMed  CAS  Google Scholar 

  5. Casiano CA (1996) Selective cleavage of nuclear autoantigens during CD95 (Fas/APO-1)-mediated T cell apoptosis. J Exp Med 184:765–770

    Article  PubMed  CAS  Google Scholar 

  6. Casciola-Rosen L et al (1996) Surface blebs on apoptotic cells are sites of enchanced procoagulant activity implications for coaglation events and antigenic spread in systemic lupus erythematosus. Proc Natl Acad Sci U S A 93:1624–1629

    Article  PubMed  CAS  Google Scholar 

  7. Chan EK et al (1991) Molecular definition and sequence motifs of the 52-kD component of human SS-A/Ro autoantigen. J Clin Invest 87:68–76

    Article  PubMed  CAS  Google Scholar 

  8. Daniels TE (1986) Salivary histopathology in diagnosis of Sjögren’s syndrome, Scand J Rheumatol Suppl 61:36–43

    PubMed  CAS  Google Scholar 

  9. Drappa J et al (1993) The Fas protein is expressed at high levels on CD4+CD8+ thymocytes and activated mature lymphocytes in normal mice but not in the lupus-prone strain, MRLlpr/lpr. Proc Natl Acad Sci U S A 90:10340–10344

    Article  PubMed  CAS  Google Scholar 

  10. Fox RI et al (2000) Update in Sjögren’s syndrome. Curr Opin Rheumatol 12:391–398

    Article  PubMed  CAS  Google Scholar 

  11. Groom J et al (2002) Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome. J Clin Invest 109:59–68

    PubMed  CAS  Google Scholar 

  12. Haneji N et al (1997) Identification of a-fodrin as a candidate autoantigen in primary Sjögren’s syndrome. Science 276:604–607

    Article  PubMed  CAS  Google Scholar 

  13. Hodes RJ (1995) Molecular alterations in the aging immune system. J Exp Med 182:1–3

    Article  PubMed  CAS  Google Scholar 

  14. Huang S et al (1997) Apoptosis signaling pathway in T cells is composed of ICE/Ced-3 familiy proteases and MAP kinase kinase 6b. Immunity 6:739–749

    Article  PubMed  CAS  Google Scholar 

  15. Humpherys-Beher MG et al (1999) The role of apoptosis in the initiation of the autoimmune response in Sjögren’s syndrome. Clin Exp Immunol 116L:383–387

    Article  Google Scholar 

  16. Ishimaru N et al (2000) Severe destructive autoimmune lesions with aging in murine Sjogen’s syndrome through Fas-mediated apoptosis. Am J Pathol 156:1557–1564

    PubMed  CAS  Google Scholar 

  17. Ishimaru N et al (2001) Possible role of organ-specific autoantigen for Fas ligand-mediated activation-induced cell death in murine Sjögren’s syndrome. J Immunol 167:6031–6037

    PubMed  CAS  Google Scholar 

  18. Ito M et al (1997) Rheumatic Disease in an MRL strain of mice with a deficit in functional Fas ligand. Arthritis Rheum 40:1054–1063

    Article  PubMed  CAS  Google Scholar 

  19. Ju S-T et al (1995) Fas(CD95)/ FasL interactions required for programmed cell death after T-cell activation. Nature 373:444–448

    Article  PubMed  CAS  Google Scholar 

  20. Kabelitz D et al (1994) Antigen-induced death of mature T lymphocytes: Analysis by flow cytometry. Immunol Rev 142:157–174

    Article  PubMed  CAS  Google Scholar 

  21. Kiecolt-Glaser JK et al (2003) Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc Natl Acad Sci U S A 100:9090–9095

    Article  PubMed  CAS  Google Scholar 

  22. Kobayashi M et al (2004) Development of autoimmune arthritis with aging via bystander T cell activation in the mouse model for Sjögren’s syndrome. Arthritis Rheum 50:3974–3984

    Article  PubMed  CAS  Google Scholar 

  23. Kothakota S et al (1997) Caspase-3-generated fragment of Gelsolin: Effector of morphological change in apoptosis. Science 278:294–298

    Article  PubMed  CAS  Google Scholar 

  24. Kruize AA et al (1995) Diagnostic criteria and immunopathogenesis of Sjögren’s syndrome: implications for therapy. Immunol Today 16:557–559

    Article  PubMed  CAS  Google Scholar 

  25. Lavie F et al (2004) Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjögren’s syndrome. J Pathol 202:496–502

    Article  PubMed  CAS  Google Scholar 

  26. Ludgate M and Jasani B (1997) Apoptosis in autoimmune and non-autoimmune thyroid desease. J Pathol 182:123–124

    Article  PubMed  CAS  Google Scholar 

  27. Mandrup-Poulsen T (2001) ß-Cell apoptosis: stimuli and signaling. Diabetes 50:S58–S63

    Article  PubMed  CAS  Google Scholar 

  28. Manoussakis MN and Moutsopoulos HM (2001) Sjögren’s syndrome: current concepts. Adv Internal Med 47:191–217

    CAS  Google Scholar 

  29. Masaki Y and Sugai S (2004) Lymphoproliferative disorders in Sjögren’s syndrome. Autoimmun Rev 3:175–182

    Article  PubMed  Google Scholar 

  30. Miller RA (1996) The aging immune system: primers and prospectus. Science 273: 70–74

    Article  PubMed  CAS  Google Scholar 

  31. Miranda-Carus ME et al (2000) Anti-SSA/Ro and anti-SSB/La autoantibodies bind the surface of apoptotic fetal cardiocytes and promote secretion of TNF-alpha by macrophages. J Immunol 165:5345–5351

    PubMed  CAS  Google Scholar 

  32. Miyazaki K et al (2005) Analysis of in vivo role of a-fodrin autoantigen in primary Sjögren’s syndrome. Am J Pathol 167:1051–1059

    PubMed  CAS  Google Scholar 

  33. Nagel JE et al (1988) Decreased proliferation, interleukin 2 synthesis, and interleukin 2 receptor expression are accompanied by decreased mRNA expression in phytohemagglutinin-stimulated cells from elderly donors. J Clin Invest 81:1096–1102

    Article  PubMed  CAS  Google Scholar 

  34. O’Brien BA et al (1997) Apoptosis is the mode of ?-cell death responsible for the development of IDDM in the nonobese diabetic (NOD) mouse. Diabetes 46:750–757

    Article  PubMed  CAS  Google Scholar 

  35. Patel YI and McHugh NJ (2000) Apoptosis-new clues to the pathogenesis of Sjögren’s syndrome? Rheumatology (Oxford) 39:119–121

    Article  CAS  Google Scholar 

  36. Pawelec G et al (1995) Immunosenescence: ageing of the immune system. Immunol Today 16:420–422

    Article  PubMed  CAS  Google Scholar 

  37. Pelfrey CM et al (1995) Two mechanisms of antigen-specific apoptosis of myelin basic protein (MBP)-specific T lymphocytes derived from multiple sclerosis patients and normal individuals. J Immunol 154:6191–6202

    PubMed  CAS  Google Scholar 

  38. Price BE et al (1996) Antiphospholipid autoantibodies bind to apoptotic, but not viable, thymocytes in a beta(2)-glycoprotein I-dependent manner. J Immunol 157:2201–2208

    PubMed  CAS  Google Scholar 

  39. Proust JJ et al (1988) Age-related defect in signal transduction during lectin activation of murine T lymphocytes. J Immunol 139:1472–1478

    Google Scholar 

  40. Rieux-Laucat F (1995) Mutation in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268:1347–1349

    Article  PubMed  CAS  Google Scholar 

  41. Saegusa K et al (2002) Prevention and induction of autoimmune exocrinopathy is dependent on pathogenic autoantigen cleavage in murine Sjögren’s syndrome. J Immunol 169:1050–1057

    PubMed  CAS  Google Scholar 

  42. Straub RH et al (2003) The multiple facets of premature aging in rheumatoid arthritis. Arthritis Rheum 48:2713–2721

    Article  PubMed  Google Scholar 

  43. Talal N et al (1967) Extrasalivary lymphoid abnormalities in Sjögren’s syndrome. Am J Med 43:506–515

    Article  Google Scholar 

  44. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456–1462

    Article  PubMed  CAS  Google Scholar 

  45. Utz PJ et al (1997) Proteins phospholylated during stress-induced apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus. J Exp Med 185:843–854

    Article  PubMed  CAS  Google Scholar 

  46. Xu L et al (2004) Human lupus T cells resist inactivation and escape death by upregulating COX-2. Nat Med 10:411–415

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hayashi, Y., Ishimaru, N. (2009). Autoimmunity—Aging Mouse Model for Autoimmune Diseases. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook on Immunosenescence. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9063-9_52

Download citation

Publish with us

Policies and ethics