Skip to main content

A prerequisite to understand cell functioning on the system level is the knowledge of three-dimensional protein structures that mediate biochemical inter actions. The explosion in the number of available gene sequences set the stage for the next step in genome scale projects, to obtain three dimensional structures for each protein. To achieve this ambitious goal, the costly and slow structure determi nation experiments are boosted with theoretical approaches. The current state and recent advances in structure modelling approaches are reviewed here, with special emphasis on comparative structure modelling techniques

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abagyan R, Totrov M (1994) Biased probability Monte Carlo conformational searches and elec trostatic calculations for peptides and proteins. J Mol Biol 235:983–1002

    Article  PubMed  CAS  Google Scholar 

  • Alber F, Dokudovskaya S, Veenhoff LM, et al. (2007a) Determining the architectures of macro molecular assemblies. Nature 450:683–694

    Article  CAS  Google Scholar 

  • Alber F, Dokudovskaya S, Veenhoff LM, et al. (2007b) The molecular architecture of the nuclear pore complex. Nature 450:695–701

    Article  CAS  Google Scholar 

  • Alber F, Forster F, Korkin D, et al. (2008) Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem 77:443–477

    Article  PubMed  CAS  Google Scholar 

  • Al Lazikani B, Sheinerman FB, Honig B (2001) Combining multiple structure and sequence alignments to improve sequence detection and alignment: application to the SH2 domains of Janus kinases. Proc Natl Acad Sci USA 98:14796

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Andreeva A, Howorth D, Chandonia JM, et al. (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36:D419–425

    Article  PubMed  CAS  Google Scholar 

  • Apostolico A, Giancarlo R (1998) Sequence alignment in molecular biology. J Comput Biol 5:173–196

    PubMed  CAS  Google Scholar 

  • Apweiler R, Bairoch A, Wu CH (2004) Protein sequence databases. Curr Opin Chem Biol 8:76–80

    Article  PubMed  CAS  Google Scholar 

  • Aszodi A, Taylor WR (1994) Secondary structure formation in model polypeptide chains. Protein Eng 7:633–644

    Article  PubMed  CAS  Google Scholar 

  • Aszodi A, Taylor WR (1996) Homology modelling by distance geometry. Fold Des 1:325–334

    Article  PubMed  CAS  Google Scholar 

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96

    Article  PubMed  CAS  Google Scholar 

  • Barrientos LG, Campos-Olivas R, Louis JM, et al. (2001) 1H, 13C, 15N resonance assignments and fold verification of a circular permuted variant of the potent HIV-inactivating protein cyanovirin-N. J Biomol NMR 19:289–290

    Article  PubMed  CAS  Google Scholar 

  • Battey JN, Kopp J, Bordoli L, et al. (2007) Automated server predictions in CASP7. Proteins 69(Suppl 8):68–82

    Article  PubMed  CAS  Google Scholar 

  • Becker OM, Dhanoa DS, Marantz Y, et al. (2006) An integrated in silico 3D model-driven discov ery of a novel, potent, and selective amidosulfonamide 5-HT1A agonist (PRX-00023) for the treatment of anxiety and depression. J Med Chem 49:3116–3135

    Article  PubMed  CAS  Google Scholar 

  • Berman H, Henrick K, Nakamura H, et al. (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35:D301–303

    Article  PubMed  CAS  Google Scholar 

  • Blake JD, Cohen FE (2001) Pairwise sequence alignment below the twilight zone. J Mol Biol 307:721–735

    Article  PubMed  CAS  Google Scholar 

  • Blundell TL, Sibanda BL, Sternberg MJ, et al. (1987) Knowledge-based prediction of protein structures and the design of novel molecules. Nature 326:347–352

    Article  PubMed  CAS  Google Scholar 

  • Boissel JP, Lee WR, Presnell SR, et al. (1993) Erythropoietin structure-function relationships. Mutant proteins that test a model of tertiary structure. J Biol Chem 268:15983–15993

    PubMed  CAS  Google Scholar 

  • Bonneau R, Baker D (2001) Ab initio protein structure prediction: progress and prospects. Annu Rev Biophys Biomol Struct 30:173–189

    Article  PubMed  CAS  Google Scholar 

  • Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three- dimensional structure. Science 253:164–170

    Article  PubMed  CAS  Google Scholar 

  • Braun W, Go N (1985) Calculation of protein conformations by proton-proton distance con straints. A new efficient algorithm. J Mol Biol 186:611–626

    Article  PubMed  CAS  Google Scholar 

  • Brenner SE, Chothia C, Hubbard TJ (1998) Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships. Proc Natl Acad Sci USA 95:6073–6078

    Article  PubMed  CAS  Google Scholar 

  • Brooks CL, III, Bruccoleri RE, Olafson BD, et al. (1983) CHARMM:A program for macromo lecular energy minimization and dynamics calculations. J Comp Chem 4:187–217

    Article  CAS  Google Scholar 

  • Browne WJ, North ACT, Phillips DC, et al. (1969) A possible three-dimensional structure of bovine lactalbumin based on that of hen's egg-white lysosyme. J Mol Biol 42:65–86

    Article  PubMed  CAS  Google Scholar 

  • Bruccoleri RE, Karplus M (1987) Prediction of the folding of short polypeptide segments by uni form conformational sampling. Biopolymers 26:137–168

    Article  PubMed  CAS  Google Scholar 

  • Bruccoleri RE, Karplus M (1990) Conformational sampling using high-temperature molecular dynamics. Biopolymers 29:1847–1862

    Article  PubMed  CAS  Google Scholar 

  • Bujnicki JM, Elofsson A, Fischer D, et al. (2001) LiveBench-1: continuous benchmarking of pro tein structure prediction servers. Protein Sci 10:352–362

    Article  PubMed  CAS  Google Scholar 

  • Burley SK, Almo SC, Bonanno JB, et al. (1999) Structural genomics: beyond the human genome project. Nat Genet 23:151–157

    Article  PubMed  CAS  Google Scholar 

  • Burley SK, Joachimiak A, Montelione GT, et al. (2008) Contributions to the NIH-NIGMS protein structure initiative from the PSI production centers. Structure 16:5–11

    Article  PubMed  CAS  Google Scholar 

  • Bystroff C, Baker D (1998) Prediction of local structure in proteins using a library of sequence structure motifs. J Mol Biol 281:565–577

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty S, Sanchez R (2004) Systematic analysis of added-value in simple comparative mod els of protein structure. Structure 12:1461–1470

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty S, Wang L, Sanchez R (2005) Accuracy of structure-derived properties in simple comparative models of protein structures. Nucleic Acids Res 33:244–259

    Article  PubMed  CAS  Google Scholar 

  • Chance MR, Bresnick AR, Burley SK, et al. (2002) Structural genomics: a pipeline for providing structures for the biologist. Protein Sci 11:723–738

    Article  PubMed  CAS  Google Scholar 

  • Chinea G, Padron G, Hooft RW, et al. (1995) The use of position-specific rotamers in model build ing by homology. Proteins 23:415–421

    Article  PubMed  CAS  Google Scholar 

  • Chivian D, Baker D (2006) Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection. Nucleic Acids Res 34:e112

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobu lins. J Mol Biol 196:901–917

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Lesk AM, Tramontano A, et al. (1989) Conformations of immunoglobulin hypervaria ble regions. Nature 342:877–883

    Article  PubMed  CAS  Google Scholar 

  • Chothia C, Gough J, Vogel C, et al. (2003) Evolution of the protein repertoire. Science 300:1701–1703

    Article  PubMed  CAS  Google Scholar 

  • Claessens M, Van Cutsem E, Lasters I, et al. (1989) Modelling the polypeptide backbone with ‘spare parts’ from known protein structures. Protein Eng 2:335–345

    Article  PubMed  CAS  Google Scholar 

  • Clore GM, Brunger AT, Karplus M, et al. (1986) Application of molecular dynamics with inter proton distance restraints to three-dimensional protein structure determination. A model study of crambin. J Mol Biol 191:523–551

    Article  PubMed  CAS  Google Scholar 

  • Clore GM, Robien MA, Gronenborn AM (1993) Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy. J Mol Biol 231:82–102

    Article  PubMed  CAS  Google Scholar 

  • Cohen FE, Kuntz ID: Tertiary structure prediction, in Prediction of protein structure and the principles of protein conformations. Edited by Fasman GD. New York, Plenum, 1989, pp. 647–705

    Google Scholar 

  • Collura V, Higo J, Garnier J (1993) Modeling of protein loops by simulated annealing. Protein Sci 2:1502–1510

    PubMed  CAS  Google Scholar 

  • Contreras-Moreira B, Fitzjohn PW, Offman M, et al. (2003) Novel use of a genetic algorithm for protein structure prediction: searching template and sequence alignment space. Proteins 53(Suppl 6):424–429

    Article  PubMed  CAS  Google Scholar 

  • Dalton JA, Jackson RM (2007) An evaluation of automated homology modelling methods at low target template sequence similarity. Bioinformatics 23:1901–1908

    Article  PubMed  CAS  Google Scholar 

  • Das B, Meirovitch H (2003) Solvation parameters for predicting the structure of surface loops in proteins: transferability and entropic effects. Proteins 51:470–483

    Article  PubMed  CAS  Google Scholar 

  • Das R, Qian B, Raman S, et al. (2007) Structure prediction for CASP7 targets using extensive all atom refinement with Rosetta@home. Proteins 69(Suppl 8):118–128

    Article  PubMed  CAS  Google Scholar 

  • de Bakker PI, DePristo MA, Burke DF, et al. (2003) Ab initio construction of polypeptide frag ments: accuracy of loop decoy discrimination by an all-atom statistical potential and the AMBER force field with the Generalized Born solvation model. Proteins 51:21–40

    Article  PubMed  CAS  Google Scholar 

  • Deane CM, Blundell TL (2001) CODA: a combined algorithm for predicting the structurally vari able regions of protein models. Protein Sci 10:599–612

    Article  PubMed  CAS  Google Scholar 

  • DePristo MA, de Bakker PI, Lovell SC, et al. (2003) Ab initio construction of polypeptide frag ments: efficient generation of accurate, representative ensembles. Proteins 51:41–55

    Article  PubMed  CAS  Google Scholar 

  • Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4:10–19

    Article  PubMed  CAS  Google Scholar 

  • Do CB, Mahabhashyam MS, Brudno M, et al. (2005) ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res 15:330–340

    Article  PubMed  CAS  Google Scholar 

  • Du P, Andrec M, Levy RM (2003) Have we seen all structures corresponding to short protein fragments in the Protein Data Bank? An update. Protein Eng 16:407–414

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC, Batzoglou S (2006) Multiple sequence alignment. Curr Opin Struct Biol 16:368–373

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC, Sjolander K (2003) SATCHMO: sequence alignment and tree construction using hid den Markov models. Bioinformatics 19:1404–1411

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC, Sjolander K (2004) COACH: profile-profile alignment of protein families using hidden Markov models. Bioinformatics 20:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three dimensional profiles. Method Enzymol 277:396–404

    Article  CAS  Google Scholar 

  • Eramian D, Shen M Y, Devos D, et al. (2006) A composite score for predicting errors in protein structure models. Protein Sci 15:1653–1666

    Article  PubMed  CAS  Google Scholar 

  • Espadaler J, Fernandez-Fuentes N, Hermoso A, et al. (2004) ArchDB: automated protein loop classification as a tool for structural genomics. Nucleic Acids Res 32:D185–188

    Article  PubMed  CAS  Google Scholar 

  • Evers A, Gohlke H, Klebe G (2003) Ligand-supported homology modelling of protein binding sites using knowledge-based potentials. J Mol Biol 334:327–345

    Article  PubMed  CAS  Google Scholar 

  • Eyrich VA, Marti-Renom MA, Przybylski D, et al. (2001) EVA: continuous automatic evaluation of protein structure prediction servers. Bioinformatics 17:1242–1243

    Article  PubMed  CAS  Google Scholar 

  • Faber HR, Matthews BW (1990) A mutant T4 lysozyme displays five different crystal conforma tions. Nature 348:263–266

    Article  PubMed  CAS  Google Scholar 

  • Fasnacht M, Zhu J, Honig B (2007) Local quality assessment in homology models using statistical potentials and support vector machines. Protein Sci 16:1557–1568

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Fuentes N, Fiser A (2006) Saturating representation of loop conformational fragments in structure databanks. BMC Struct Biol 6:15

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Fuentes N, Oliva B, Fiser A (2006a) A supersecondary structure library and search algorithm for modeling loops in protein structures. Nucleic Acids Res 34:2085–2097

    Article  CAS  Google Scholar 

  • Fernandez-Fuentes N, Zhai J, Fiser A (2006b) ArchPRED: a template based loop structure predic tion server. Nucleic Acids Res 34:W173–176

    Article  CAS  Google Scholar 

  • Fernandez-Fuentes N, Madrid-Aliste CJ, Rai BK, et al. (2007a) M4T: a comparative protein struc ture modeling server. Nucleic Acids Res 35:W363–368

    Article  Google Scholar 

  • Fernandez-Fuentes N, Rai BK, Madrid-Aliste CJ, et al. (2007b) Comparative protein structure modeling by combining multiple templates and optimizing sequence-to-structure alignments. Bioinformatics 23:2558–2565

    Article  CAS  Google Scholar 

  • Fidelis K, Stern PS, Bacon D, et al. (1994) Comparison of systematic search and database methods for constructing segments of protein structure. Protein Eng 7:953–960

    Article  PubMed  CAS  Google Scholar 

  • Fine RM, Wang H, Shenkin PS, et al. (1986) Predicting antibody hypervariable loop conforma tions. II: minimization and molecular dynamics studies of MCPC603 from many randomly generated loop conformations. Proteins 1:342–362

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein AV, Reva BA (1991) A search for the most stable folds of protein chains. Nature 351:497–499

    Article  PubMed  CAS  Google Scholar 

  • Fiser A (2004) Protein structure modeling in the proteomics era. Expert Rev Proteomics 1:97–110

    Article  PubMed  CAS  Google Scholar 

  • Fiser A, Sali A (2003a) Modeller: generation and refinement of homology-based protein structure models. Method Enzymol 374:461–491

    Article  CAS  Google Scholar 

  • Fiser A, Sali A (2003b) ModLoop: automated modeling of loops in protein structures. Bioinformatics 19:2500–2501

    Article  CAS  Google Scholar 

  • Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

    PubMed  CAS  Google Scholar 

  • Fiser A, Feig M, Brooks CL, III, et al. (2002) Evolution and physics in comparative protein struc ture modeling. Acc Chem Res 35:413–421

    Article  PubMed  CAS  Google Scholar 

  • Fiser A, Filipe SR, Tomasz A (2003) Cell wall branches, penicillin resistance and the secrets of the MurM protein. Trends Microbiol 11:547–553

    Article  PubMed  CAS  Google Scholar 

  • Fogolari F, Tosatto SC (2005) Application of MM/PBSA colony free energy to loop decoy dis crimination: toward correlation between energy and root mean square deviation. Protein Sci 14:889–901

    Article  PubMed  CAS  Google Scholar 

  • Forrest LR, Woolf TB (2003) Discrimination of native loop conformations in membrane proteins: decoy library design and evaluation of effective energy scoring functions. Proteins 52:492–509

    Article  PubMed  CAS  Google Scholar 

  • Ginalski K (2006) Comparative modeling for protein structure prediction. Curr Opin Struct Biol 16:172–177

    Article  PubMed  CAS  Google Scholar 

  • Ginalski K, Elofsson A, Fischer D, et al. (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19:1015–1018

    Article  PubMed  CAS  Google Scholar 

  • Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359:509–525

    Article  PubMed  CAS  Google Scholar 

  • Greene LH, Lewis TE, Addou S, et al. (2007) The CATH domain structure database: new proto cols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res 35:D291–297

    Article  PubMed  CAS  Google Scholar 

  • Greer J (1981) Comparative model-building of the mammalian serine proteases. J Mol Biol 153:1027–1042

    Article  PubMed  CAS  Google Scholar 

  • Greer J (1990) Comparative modeling methods: application to the family of the mammalian serine proteases. Proteins 7:317–334

    Article  PubMed  CAS  Google Scholar 

  • Guenther B, Onrust R, Sali A, et al. (1997) Crystal structure of the alpha-subunit of the clamp loader complex of E. coli DNA polymerase III. Cell 91:335–345

    CAS  Google Scholar 

  • Han R, Leo-Macias A, Zerbino D, et al. (2008) An efficient conformational sampling method for homology modeling. Proteins 71:175–188

    Article  PubMed  CAS  Google Scholar 

  • Havel TF, Snow ME (1991) A new method for building protein conformations from sequence alignments with homologues of known structure. J Mol Biol 217:1–7

    Article  PubMed  CAS  Google Scholar 

  • Henikoff JG, Pietrokovski S, McCallum CM, et al. (2000) Blocks-based methods for detecting protein homology. Electrophoresis 21:1700–1706

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919

    Article  PubMed  CAS  Google Scholar 

  • Holm L, Sander C (1991) Database algorithm for generating protein backbone and side-chain co ordinates from a C alpha trace application to model building and detection of co-ordinate errors. J Mol Biol 218:183–194

    Article  PubMed  CAS  Google Scholar 

  • Hooft RW, Vriend G, Sander C, et al. (1996) Errors in protein structures. Nature 381:272

    Article  PubMed  CAS  Google Scholar 

  • Jacobson MP, Pincus DL, Rapp CS, et al. (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55:351–367

    Article  PubMed  CAS  Google Scholar 

  • Jaroszewski L, Rychlewski L, Zhang B, et al. (1998) Fold prediction by a hierarchy of sequence, threading, and modeling methods. Protein Sci 7:1431–1440

    PubMed  CAS  Google Scholar 

  • Jaroszewski L, Rychlewski L, Godzik A (2000) Improving the quality of twilight-zone align ments. Protein Sci 9:1487–1496

    PubMed  CAS  Google Scholar 

  • Jaroszewski L, Rychlewski L, Li Z, et al. (2005) FFAS03: a server for profile-profile sequence alignments. Nucleic Acids Res 33:W284–288

    Article  PubMed  CAS  Google Scholar 

  • Jauch R, Yeo HC, Kolatkar PR, et al. (2007) Assessment of CASP7 structure predictions for tem plate free targets. Proteins 69(Suppl 8):57–67

    Article  PubMed  CAS  Google Scholar 

  • Jennings AJ, Edge CM, Sternberg MJ (2001) An approach to improving multiple alignments of protein sequences using predicted secondary structure. Protein Eng 14:227–231

    Article  PubMed  CAS  Google Scholar 

  • John B, Sali A (2003) Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res 31:3982–3992

    Article  PubMed  CAS  Google Scholar 

  • John B, Sali A (2004) Detection of homologous proteins by an intermediate sequence search. Protein Sci 13:54–62

    Article  PubMed  CAS  Google Scholar 

  • Johnson LN, Lowe ED, Noble ME, et al. (1998) The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. FEBS Lett 430:1–11

    Article  PubMed  CAS  Google Scholar 

  • Jones DT (1999) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 287:797–815

    Article  PubMed  CAS  Google Scholar 

  • Jones TA, Thirup S (1986) Using known substructures in protein model building and crystallog raphy. EMBO J 5:819–822

    PubMed  CAS  Google Scholar 

  • Karchin R, Cline M, Mandel-Gutfreund Y, et al. (2003) Hidden Markov models that use pre dicted local structure for fold recognition: alphabets of backbone geometry. Proteins 51:504–514

    Article  PubMed  CAS  Google Scholar 

  • Karplus K, Barrett C, Hughey R (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14:846–856

    Article  PubMed  CAS  Google Scholar 

  • Karplus K, Katzman S, Shackleford G, et al. (2005) SAM-T04: what is new in protein-structure prediction for CASP6. Proteins 61(Suppl 7):135–142

    Article  PubMed  CAS  Google Scholar 

  • Kihara D, Skolnick J (2003) The PDB is a covering set of small protein structures. J Mol Biol 334:793–802

    Article  PubMed  CAS  Google Scholar 

  • Kiselar JG, Janmey PA, Almo SC, et al. (2003) Structural analysis of gelsolin using synchrotron protein footprinting. Mol Cell Proteomics 2:1120–1132

    Article  PubMed  CAS  Google Scholar 

  • Koehl P, Delarue M (1995) A self consistent mean field approach to simultaneous gap closure and side-chain positioning in homology modelling. Nat Struct Biol 2:163–170

    Article  PubMed  CAS  Google Scholar 

  • Kolinski A, Bujnicki JM (2005) Generalized protein structure prediction based on combination of fold-recognition with de novo folding and evaluation of models. Proteins 61(Suppl 7):84–90

    Article  PubMed  CAS  Google Scholar 

  • Kolinski A, Betancourt MR, Kihara D, et al. (2001) Generalized comparative modeling (GENECOMP): a combination of sequence comparison, threading, and lattice modeling for protein structure prediction and refinement. Proteins 44:133–149

    Article  PubMed  CAS  Google Scholar 

  • Kopp J, Schwede T (2006) The SWISS-MODEL Repository: new features and functionalities. Nucleic Acids Res 34:D315–318

    Article  PubMed  CAS  Google Scholar 

  • Kopp J, Bordoli L, Battey JN, et al. (2007) Assessment of CASP7 predictions for template-based modeling targets. Proteins 69(Suppl 8):38–56

    Article  PubMed  CAS  Google Scholar 

  • Krogh A, Brown M, Mian IS, et al. (1994) Hidden Markov models in computational biology. Applications to protein modeling. J Mol Biol 235:1501–1531

    CAS  Google Scholar 

  • Laskowski RA, Moss DS, Thornton JM (1993) Main-chain bond lengths and bond angles in pro tein structures. J Mol Biol 231:1049–1067

    Article  PubMed  CAS  Google Scholar 

  • Lesk AM (1995) NAD-binding domains of dehydrogenases. Curr Opin Struct Biol 5:775–783

    Article  PubMed  CAS  Google Scholar 

  • Lesk AM, Chothia C (1980) How different amino acid sequences determine similar protein struc tures: the structure and evolutionary dynamics of the globins. J Mol Biol 136:225–270

    Article  PubMed  CAS  Google Scholar 

  • Levitt M (1992) Accurate modeling of protein conformation by automatic segment matching. J Mol Biol 226:507–533

    Article  PubMed  CAS  Google Scholar 

  • Luthy R, McLachlan AD, Eisenberg D (1991) Secondary structure-based profiles: use of structure-conserving scoring tables in searching protein sequence databases for structural similarities. Proteins 10:229–239

    Article  PubMed  CAS  Google Scholar 

  • Manjasetty BA, Shi W, Zhan C, et al. (2007) A high-throughput approach to protein structure analysis. Genet Eng (NY) 28:105–128

    Article  CAS  Google Scholar 

  • Marti-Renom MA, Stuart AC, Fiser A, et al. (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  PubMed  CAS  Google Scholar 

  • Marti-Renom MA, Madhusudhan MS, Fiser A, et al. (2002) Reliability of assessment of protein structure prediction methods. Structure(Camb) 10:435–440

    Article  CAS  Google Scholar 

  • Marti-Renom MA, Madhusudhan MS, Sali A (2004) Alignment of protein sequences by their profiles. Protein Sci 13:1071–1087

    Article  PubMed  CAS  Google Scholar 

  • Melo F, Feytmans E (1997) Novel knowledge-based mean force potential at atomic level. J Mol Biol 267:207–222

    Article  PubMed  CAS  Google Scholar 

  • Mezei M (1998) Chameleon sequences in the PDB. Protein Eng 11:411–414

    Article  PubMed  CAS  Google Scholar 

  • Michalsky E, Goede A, Preissner R (2003) Loops In Proteins (LIP)-a comprehensive loop data base for homology modelling. Protein Eng 16:979–985

    Article  PubMed  CAS  Google Scholar 

  • Moretti S, Armougom F, Wallace IM, et al. (2007) The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res 35:W645–648

    Article  PubMed  Google Scholar 

  • Moult J (2005) A decade of CASP: progress, bottlenecks and prognosis in protein structure pre diction. Curr Opin Struct Biol 15:285–289

    Article  PubMed  CAS  Google Scholar 

  • Moult J, James MN (1986) An algorithm for determining the conformation of polypeptide seg ments in proteins by systematic search. Proteins 1:146–163

    Article  PubMed  CAS  Google Scholar 

  • Notredame C (2007) Recent evolutions of multiple sequence alignment algorithms. PLoS Comput Biol 3:e123

    Article  PubMed  CAS  Google Scholar 

  • Ohlendorf DH (1994) Accuracy of refined protein structures. Comparison of four independently refined models of human interleukin 1 beta. Acta Crystallogr D Biol Crystallogr D50:808–812

    Article  Google Scholar 

  • Oliva B, Bates PA, Querol E, et al. (1997) An automated classification of the structure of protein loops. J Mol Biol 266:814–830

    Article  PubMed  CAS  Google Scholar 

  • Orr GA, Rao S, Swindell CS, et al. (1998) Photoaffinity labeling approach to map the Taxol-bind-ing site on the microtubule. Method Enzymol 298:238–252

    Article  CAS  Google Scholar 

  • Pearson WR (2000) Flexible sequence similarity searching with the FASTA3 program package. Method Mol Biol 132:185–219

    CAS  Google Scholar 

  • Pei J, Grishin NV (2007) PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics 23:802–808

    Article  PubMed  CAS  Google Scholar 

  • Pei J, Kim BH, Grishin NV (2008) PROMALS3D: a tool for multiple protein sequence and struc ture alignments. Nucleic Acids Res 36:2295–2300

    Article  PubMed  CAS  Google Scholar 

  • Peng HP, Yang AS (2007) Modeling protein loops with knowledge-based prediction of sequence-structure alignment. Bioinformatics 23:2836–2842

    Article  PubMed  CAS  Google Scholar 

  • Petrey D, Honig B (2005) Protein structure prediction: inroads to biology. Mol Cell 20:811–819

    Article  PubMed  CAS  Google Scholar 

  • Petrey D, Xiang Z, Tang CL, et al. (2003) Using multiple structure alignments, fast model build ing, and energetic analysis in fold recognition and homology modeling. Proteins 53(Suppl 6):430–435

    Article  PubMed  CAS  Google Scholar 

  • Pieper U, Eswar N, Davis FP, et al. (2006) MODBASE: a database of annotated comparative pro tein structure models and associated resources. Nucleic Acids Res 34:D291–295

    Article  PubMed  CAS  Google Scholar 

  • Pillardy J, Czaplewski C, Liwo A, et al. (2001) Recent improvements in prediction of protein structure by global optimization of a potential energy function. Proc Natl Acad Sci USA 98:2329–23233

    Article  PubMed  CAS  Google Scholar 

  • Qian B, Ortiz AR, Baker D (2004) Improvement of comparative model accuracy by free-energy optimization along principal components of natural structural variation. Proc Natl Acad Sci USA 101:15346–15351

    Article  PubMed  CAS  Google Scholar 

  • Rai BK, Fiser A (2006) Multiple mapping method: a novel approach to the sequence-to-structure alignment problem in comparative protein structure modeling. Proteins 63:644–661

    Article  PubMed  CAS  Google Scholar 

  • Rai BK, Madrid-Aliste CJ, Fajardo JE, et al. (2006) MMM: a sequence-to-structure alignment protocol. Bioinformatics 22:2691–2692

    Article  PubMed  CAS  Google Scholar 

  • Reddy BV, Li WW, Shindyalov IN, et al. (2001) Conserved key amino acid positions (CKAAPs) derived from the analysis of common substructures in proteins. Proteins 42:148–163

    Article  PubMed  CAS  Google Scholar 

  • Ring CS, Cohen FE (1993) Modeling protein structures: construction and their applications. FASEB J 7:783–890

    PubMed  CAS  Google Scholar 

  • Ring CS, Sun E, McKerrow JH, et al. (1993) Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci USA 90:3583–3587

    Article  PubMed  CAS  Google Scholar 

  • Rohl CA, Strauss CE, Chivian D, et al. (2004) Modeling structurally variable regions in homolo gous proteins with rosetta. Proteins 55:656–677

    Article  PubMed  CAS  Google Scholar 

  • Rost B (1997) Protein structures sustain evolutionary drift. Fold Des 2:S19–S24

    Article  PubMed  CAS  Google Scholar 

  • Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94

    Article  PubMed  CAS  Google Scholar 

  • Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466

    Article  PubMed  CAS  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, et al. (2007) The Sorcerer II Global Ocean Sampling expedi tion: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5:e77

    Article  PubMed  CAS  Google Scholar 

  • Rychlewski L, Jaroszewski L, Li W, et al. (2000) Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci 9:232–241

    PubMed  CAS  Google Scholar 

  • Rykunov D, Fiser A (2007) Effects of amino acid composition, finite size of proteins, and sparse statistics on distance-dependent statistical pair potentials. Proteins 67:559–568

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Matsumoto R, McNeil HP, et al. (1993) Three-dimensional models of four mouse mast cell chymases. Identification of proteoglycan binding regions and protease-specific antigenic epitopes. J Biol Chem 268:9023–9034

    PubMed  CAS  Google Scholar 

  • Sali A, Shakhnovich E, Karplus M (1994) How does a protein fold?. Nature 369:248–251

    Article  PubMed  CAS  Google Scholar 

  • Samudrala R, Moult J (1998) A graph-theoretic algorithm for comparative modeling of protein structure. J Mol Biol 279:287–302

    Article  PubMed  CAS  Google Scholar 

  • Sanchez R, Sali A (1997) Evaluation of comparative protein structure modeling by MODELLER-3. Proteins(Suppl 1):50–58

    Article  PubMed  Google Scholar 

  • Sanchez R, Sali A (1998) Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci USA 95:13597–13602

    Article  PubMed  CAS  Google Scholar 

  • Sangar V, Blankenberg DJ, Altman N, et al. (2007) Quantitative sequence-function relationships in proteins based on gene ontology. BMC Bioinformatics 8:294

    Article  PubMed  CAS  Google Scholar 

  • Saraste M, Sibbald PR, Wittinghofer A (1990) The P-loop-a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci 15:430–434

    Article  PubMed  Google Scholar 

  • Sauder JM, Arthur JW, Dunbrack RL, Jr. (2000) Large-scale comparison of protein sequence alignment algorithms with structure alignments. Proteins 40:6–22

    Article  PubMed  CAS  Google Scholar 

  • Schaffer AA, Aravind L, Madden TL, et al. (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005

    Article  PubMed  CAS  Google Scholar 

  • Schwarzenbacher R, Godzik A, Jaroszewski L (2008) The JCSG MR pipeline: optimized align ments, multiple models and parallel searches. Acta Crystallogr D Biol Crystallogr 64:133–140

    Article  PubMed  CAS  Google Scholar 

  • Sheng Y, Sali A, Herzog H, et al. (1996) Site-directed mutagenesis of recombinant human beta 2-glycoprotein I identifies a cluster of lysine residues that are critical for phospholipid binding and anti-cardiolipin antibody activity. J Immunol 157:3744–3751

    PubMed  CAS  Google Scholar 

  • Shenkin PS, Yarmush DL, Fine RM, et al. (1987) Predicting antibody hypervariable loop confor mation. I. Ensembles of random conformations for ringlike structures. Biopolymers 26:2053–2085

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310:243–257

    Article  PubMed  CAS  Google Scholar 

  • Sibanda BL, Blundell TL, Thornton JM (1989) Conformation of beta-hairpins in protein struc tures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol 206:759–777

    Article  PubMed  CAS  Google Scholar 

  • Sippl MJ (1990) Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol 213:859–883

    Article  PubMed  CAS  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  PubMed  CAS  Google Scholar 

  • Sippl MJ (1995) Knowledge-based potentials for proteins. Curr Opin Struct Biol 5:229–235

    Article  PubMed  CAS  Google Scholar 

  • Soto CS, Fasnacht M, Zhu J, et al. (2008) Loop modeling: Sampling, filtering, and scoring. Proteins 70:834–843

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan N, Blundell TL (1993) An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng 6:501–512

    Article  PubMed  CAS  Google Scholar 

  • Summa CM, Levitt M (2007) Near-native structure refinement using in vacuo energy minimiza tion. Proc Natl Acad Sci USA 104:3177–3182

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe MJ, Haneef I, Carney D, et al. (1987) Knowledge based modelling of homologous pro teins, Part I: three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng 1:377–384

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe MJ, Dobson CM, Oswald RE (1992) Solution structure of neuronal bungarotoxin deter mined by two-dimensional NMR spectroscopy: calculation of tertiary structure using system atic homologous model building, dynamical simulated annealing, and restrained molecular dynamics. Biochemistry 31:2962–2970

    Article  PubMed  CAS  Google Scholar 

  • Tainer JA, Thayer MM, Cunningham RP (1995) DNA repair proteins. Curr Opin Struct Biol 5:20–26

    Article  PubMed  CAS  Google Scholar 

  • Taylor WR, Hatrick K (1994) Compensating changes in protein multiple sequence alignments. Protein Eng 7:341–348

    Article  PubMed  CAS  Google Scholar 

  • Terashi G, Takeda-Shitaka M, Kanou K, et al. (2007) Fams-ace: a combined method to select the best model after remodeling all server models. Proteins 69(Suppl 8):98–107

    Article  PubMed  CAS  Google Scholar 

  • Todd AE, Orengo CA, Thornton JM (2001) Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol 307:1113–1143

    Article  PubMed  CAS  Google Scholar 

  • Todd AE, Orengo CA, Thornton JM (2002) Plasticity of enzyme active sites. Trends Biochem Sci 27:419–426

    Article  PubMed  CAS  Google Scholar 

  • Topf M, Lasker K, Webb B, et al. (2008) Protein structure fitting and refinement guided by cryo-EM density. Structure 16:295–307

    Article  PubMed  CAS  Google Scholar 

  • Topham CM, McLeod A, Eisenmenger F, et al. (1993) Fragment ranking in modelling of protein structure. Conformationally constrained environmental amino acid substitution tables. J Mol Biol 229:194–220

    Article  PubMed  CAS  Google Scholar 

  • Unger R, Harel D, Wherland S, et al. (1989) A 3D building blocks approach to analyzing and pre dicting structure of proteins. Proteins 5:355–373

    Article  PubMed  CAS  Google Scholar 

  • Vakser IA (1995) Protein docking for low-resolution structures. Protein Eng 8:371–377

    Article  PubMed  CAS  Google Scholar 

  • van Gelder CW, Leusen FJ, Leunissen JA, et al. (1994) A molecular dynamics approach for the generation of complete protein structures from limited coordinate data. Proteins 18:174–185

    Article  PubMed  Google Scholar 

  • van Vlijmen HW, Karplus M (1997) PDB-based protein loop prediction: parameters for selection and methods for optimization. J Mol Biol 267:975–1001

    Article  PubMed  Google Scholar 

  • Venclovas C, Margelevicius M (2005) Comparative modeling in CASP6 using consensus approach to template selection, sequence-structure alignment, and structure assessment. Proteins 61:99–105

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  • Vernal J, Fiser A, Sali A, et al. (2002) Probing the specificity of a trypanosomal aromatic alpha hydroxy acid dehydrogenase by site-directed mutagenesis. Biochem Biophys Res Commun 293:633–639

    Article  PubMed  CAS  Google Scholar 

  • Vitkup D, Melamud E, Moult J, et al. (2001) Completeness in structural genomics. Nat Struct Biol 8:559–566

    Article  PubMed  CAS  Google Scholar 

  • Wallner B, Elofsson A (2005a) Pcons5: combining consensus, structural evaluation and fold rec ognition scores. Bioinformatics 21:4248–4254

    Article  CAS  Google Scholar 

  • Wallner B, Elofsson A (2005b) All are not equal: a benchmark of different homology modeling programs. Protein Sci 14:1315–1327

    Article  CAS  Google Scholar 

  • Wallner B, Elofsson A (2007) Prediction of global and local model quality in CASP7 using Pcons and ProQ. Proteins 69(Suppl 8):184–193

    Article  PubMed  CAS  Google Scholar 

  • Wallner B, Larsson P, Elofsson A (2007) Pcons.net: protein structure prediction meta server. Nucleic Acids Res 35:W369–374

    Article  PubMed  Google Scholar 

  • Wlodawer A, Miller M, Jaskolski M, et al. (1989) Conserved folding in retroviral proteases: crys tal structure of a synthetic HIV-1 protease. Science 245:616–621

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Apweiler R, Bairoch A, et al. (2006) The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34:D187–191

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Fiser A, ter Kuile B, et al. (1999) Convergent evolution of Trichomonas vaginalis lactate dehydrogenase from malate dehydrogenase. Proc Natl Acad Sci USA 96:6285–6290

    Article  PubMed  CAS  Google Scholar 

  • Wu G, McArthur AG, Fiser A, et al. (2000) Core histones of the amitochondriate protist, Giardia lamblia. Mol Biol Evol 17:1156–1163

    PubMed  CAS  Google Scholar 

  • Xiang Z, Soto CS, Honig B (2002) Evaluating conformational free energies: The colony energy and its application to the problem of loop prediction. Proc Natl Acad Sci USA 99:7432–7437

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, et al. (2006) Insights into the mechanism of microtubule stabilization by Taxol. Proc Natl Acad Sci USA 103:10166–10173

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Jiao F, Yu L (2007) Protein structure prediction using threading. Methods Mol Biol 413:91–122

    Article  Google Scholar 

  • Xu LZ, Sanchez R, Sali A, et al. (1996) Ligand specificity of brain lipid-binding protein. J Biol Chem 271:24711–24719

    Article  PubMed  CAS  Google Scholar 

  • Yooseph S, Sutton G, Rusch DB, et al. (2007) The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol 5:e16

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Liu S, Zhou Y (2004) Accurate and efficient loop selections by the DFIRE-based all-atom statistical potential. Protein Sci 13:391–399

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2007) Template-based modeling and free modeling by I-TASSER in CASP7. Proteins 69(Suppl 8):108–117

    Article  PubMed  CAS  Google Scholar 

  • Zheng Q, Rosenfeld R, Vajda S, et al. (1993) Determining protein loop conformation using scal ing-relaxation techniques. Protein Sci 2:1242–1248

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Pandit SB, Lee SY, et al. (2007) Analysis of TASSER-based CASP7 protein structure prediction results. Proteins 69(Suppl 8):90–97

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AndrĂ¡s Fiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Fiser, A. (2009). Comparative Protein Structure Modelling. In: Rigden, D.J. (eds) From Protein Structure to Function with Bioinformatics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9058-5_3

Download citation

Publish with us

Policies and ethics