Skip to main content

Regulation of lipid metabolism by sphingolipids

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 49))

Abstract

Sphingolipids, together with phospholipids and cholesterol are key components of membrane lipid bilayers, contribute to specialized membrane domains called rafts and function as signaling molecules. Sphingolipids have been recognized to exert a distinct role in the post-transcriptional regulation of the sterol-regulatory element binding proteins (SREBPs), key transcription factors of lipid synthesis. Sphingolipid synthesis is an obligate activator of SREBP. Inhibition of sphingolipid synthesis decreases SREBP on a post-transcriptional level. With the exception of enzymes that synthesize sphingolipids, SREBPs regulate the transcription of key enzymes that synthesize cholesterol, phospholipids and fatty acids. This observation suggests an exclusive role for sphingolipids in the regulation of lipid metabolism. Although exact mechanisms how sphingolipids regulate lipid metabolism are currently not known, this relationship has important implications with regard to cellular lipid homeostasis, composition of lipoproteins and development of atherosclerosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abousalham A, Hobman TC, Dewald J, Garbutt M, Brindley DN. Cell-permeable ceramides preferentially inhibit coated vesicle formation and exocytosis in Chinese hamster ovary compared with Madin- Darby canine kidney cells by preventing the membrane association of ADP- ribosylation factor. Biochem J 361(2002) 653–661.

    Article  PubMed  CAS  Google Scholar 

  • Arimoto I, Saito H, Kawashima Y, Miyajima K, Handa T. Effects of sphingomyelin and cholesterol on lipoprotein lipase-mediated lipolysis in lipid emulsions. J Lipid Res 39(1998) 143–151.

    PubMed  CAS  Google Scholar 

  • Baron CL, Malhotra V. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295(2002) 325–328.

    Article  PubMed  CAS  Google Scholar 

  • Batheja AD, Uhlinger DJ, Carton JM, Ho G, D'Andrea MR. Characterization of serine palmitoyltransferase in normal human tissues. J Histochem Cytochem 51(2003) 687–696.

    PubMed  CAS  Google Scholar 

  • Baumgart T, Hess ST, Webb WW. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425(2003) 821–824.

    Article  PubMed  CAS  Google Scholar 

  • Bolin DJ, Jonas A. Sphingomyelin inhibits the lecithin-cholesterol acyltransferase reaction with reconstituted high density lipoproteins by decreasing enzyme binding. J Biol Chem 271(1996) 19152–19158.

    Article  PubMed  CAS  Google Scholar 

  • Demel RA, Jansen JW, van Dijck PW, van Deenen LL. The preferential interaction of cholesterol with different classes of phospholipids. Biochim Biophys Acta 465(1977) 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Dobrosotskaya IY, Seegmiller AC, Brown MS, Goldstein JL, Rawson RB. Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science 296(2002) 879–883.

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Liu J, Lou B, Li Z, Ye X, Wu M, Jiang XC. Adenovirus-mediated overexpression of sphingomyelin synthases 1 and 2 increases the atherogenic potential in mice. J Lipid Res 47(2006) 1307–1314.

    Article  PubMed  CAS  Google Scholar 

  • Fugmann T, Hausser A, Schoffler P, Schmid S, Pfizenmaier K, Olayioye MA. Regulation of secretory transport by protein kinase D-mediated phosphorylation of the ceramide transfer protein. J Cell Biol 178(2007) 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Ghering AB, Davidson WS. Ceramide structural features required to stimulate ABCA1-mediated cholesterol efflux to apolipoprotein A-I. J Lipid Res 47(2006) 2781–2788.

    Article  PubMed  CAS  Google Scholar 

  • Glaros EN, Kim WS, Quinn CM, Wong J, Gelissen I, Jessup W, Garner B. Glycosphingolipid accumulation inhibits cholesterol efflux via the ABCA1/apolipoprotein A-I pathway: 1-phenyl-2-decanoylamino-3-morpholino-1-propanol is a novel cholesterol efflux accelerator. J Biol Chem 280(2005) 24515–24523.

    Article  PubMed  CAS  Google Scholar 

  • Hanada K. Discovery of the molecular machinery CERT for endoplasmic reticulum-to-Golgi trafficking of ceramide. Mol Cell Biochem 286(2006) 23–31.

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426(2003) 803–809.

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Obeid LM. The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277(2002) 25847–25850.

    Article  PubMed  CAS  Google Scholar 

  • Hojjati MR, Li Z, Jiang XC. Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim Biophys Acta 1737(2005a) 44–51.

    CAS  Google Scholar 

  • Hojjati MR, Li Z, Zhou H, Tang S, Huan C, Ooi E, Lu S, Jiang XC. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J Biol Chem 280(2005b) 10284–10289.

    Article  CAS  Google Scholar 

  • Hornemann T, Richard S, Rutti MF, Wei Y, von Eckardstein A. Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J Biol Chem 281(2006) 37275–37281.

    Article  PubMed  CAS  Google Scholar 

  • Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109(2002) 1125–1131.

    PubMed  CAS  Google Scholar 

  • Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 100(2003) 12027–12032.

    Article  PubMed  CAS  Google Scholar 

  • Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC. Identification of a family of animal sphingomyelin synthases. Embo J 23(2004) 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Jeong T, Schissel SL, Tabas I, Pownall HJ, Tall AR, Jiang X. Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. J Clin Invest 101(1998) 905–912.

    Article  PubMed  CAS  Google Scholar 

  • Jiang XC, Paultre F, Pearson TA, Reed RG, Francis CK, Lin M, Berglund L, Tall A. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol 20(2000) 2614–2618.

    PubMed  CAS  Google Scholar 

  • Johnson RA, Hamilton JA, Worgall TS, Deckelbaum RJ. Free fatty acids modulate intermembrane trafficking of cholesterol by increasing lipid mobilities: novel 13C NMR analyses of free cholesterol partitioning. Biochemistry 42(2003) 1637–1645.

    Article  PubMed  CAS  Google Scholar 

  • Kawano M, Kumagai K, Nishijima M, Hanada K. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. J Biol Chem 281(2006) 30279–30288.

    Article  PubMed  CAS  Google Scholar 

  • Kunte AS, Matthews KA, Rawson RB. Fatty acid auxotrophy in Drosophila larvae lacking SREBP. Cell Metab 3(2006) 439–448.

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S, Futerman AH. LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor. J Biol Chem 280(2005) 33735–33738.

    Article  PubMed  CAS  Google Scholar 

  • Lange Y, Swaisgood MH, Ramos BV, Steck TL. Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J Biol Chem 264(1989) 3786–3793.

    PubMed  CAS  Google Scholar 

  • Le Stunff H, Giussani P, Maceyka M, Lepine S, Milstien S, Spiegel S. Recycling of sphingosine is regulated by the concerted actions of sphingosine-1-phosphate phosphohydrolase 1 and sphingosine kinase 2. J Biol Chem 282(2007) 34372–34380.

    Article  PubMed  Google Scholar 

  • Lee CY, Lesimple A, Denis M, Vincent J, Larsen A, Mamer O, Krimbou L, Genest J, Marcil M. Increased sphingomyelin content impairs HDL biogenesis and maturation in human Niemann-Pick disease type B. J Lipid Res 47(2006) 622–632.

    Article  PubMed  CAS  Google Scholar 

  • McGovern MM, Pohl-Worgall T, Deckelbaum RJ, Simpson W, Mendelson D, Desnick RJ, Schuchman EH, Wasserstein MP. Lipid abnormalities in children with types A and B Niemann Pick disease. J Pediatr 145(2004) 77–81.

    Article  PubMed  CAS  Google Scholar 

  • McKay RM, McKay JP, Avery L, Graff JM. C elegans: a model for exploring the genetics of fat storage. Dev Cell 4(2003) 131–142.

    Article  PubMed  CAS  Google Scholar 

  • Merrill AH, Jr., Sullards MC, Allegood JC, Kelly S, Wang E. Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36(2005) 207–224.

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Jiang XC, Tabas I, Tall A, Shea S. Plasma sphingomyelin and subclinical atherosclerosis: findings from the multi-ethnic study of atherosclerosis. Am J Epidemiol 163(2006) 903–912.

    Article  PubMed  Google Scholar 

  • Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte JP. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41(2002) 66–97.

    Article  PubMed  CAS  Google Scholar 

  • Pagano RE, Puri V, Dominguez M, Marks DL. Membrane traffic in sphingolipid storage diseases. Traffic 1(2000) 807–815.

    Article  PubMed  CAS  Google Scholar 

  • Park TS, Panek RL, Mueller SB, Hanselman JC, Rosebury WS, Robertson AW, Kindt EK, Homan R, Karathanasis SK, Rekhter MD. Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 110(2004) 3465–3471.

    Article  PubMed  CAS  Google Scholar 

  • Park TS, Panek RL, Rekhter MD, Mueller SB, Rosebury WS, Robertson A, Hanselman JC, Kindt E, Homan R, Karathanasis SK. Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice. Atherosclerosis 189(2006) 264–272.

    Article  PubMed  CAS  Google Scholar 

  • Pewzner-Jung Y, Ben-Dor S, Futerman AH. When do Lasses (longevity assurance genes) become CerS (ceramide synthases)? Insights into the regulation of ceramide synthesis. J Biol Chem 281(2006) 25001–25005.

    Article  PubMed  CAS  Google Scholar 

  • Puri V, Jefferson JR, Singh RD, Wheatley CL, Marks DL, Pagano RE. Sphingolipid storage induces accumulation of intracellular cholesterol by stimulating SREBP-1 cleavage. J Biol Chem 278(2003) 20961–20970.

    Article  PubMed  CAS  Google Scholar 

  • Ridgway ND. 25-Hydroxycholesterol stimulates sphingomyelin synthesis in Chinese hamster ovary cells. J Lipid Res 36(1995) 1345–1358.

    PubMed  CAS  Google Scholar 

  • Ridgway ND, Merriam DL. Metabolism of short-chain ceramide and dihydroceramide analogues in Chinese hamster ovary (CHO) cells. Biochim Biophys Acta 1256(1995) 57–70.

    PubMed  Google Scholar 

  • Rosenwald AG, Pagano RE. Inhibition of glycoprotein traffic through the secretory pathway by ceramide. J Biol Chem 268(1993) 4577–4579.

    PubMed  CAS  Google Scholar 

  • Sakai J, Duncan EA, Rawson RB, Hua X, Brown MS, Goldstein JL. Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 85(1996) 1037–1046.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer EJ, Lamon-Fava S, Ordovas JM, Cohn SD, Schaefer MM, Castelli WP, Wilson PW. Factors associated with low and elevated plasma high density lipoprotein cholesterol and apolipoprotein A-I levels in the Framingham Offspring Study. J Lipid Res 35(1994) 871–882.

    PubMed  CAS  Google Scholar 

  • Scheek S, Brown MS, Goldstein JL. Sphingomyelin depletion in cultured cells blocks proteolysis of sterol regulatory element binding proteins at site 1. Proc Natl Acad Sci U S A 94(1997) 11179–11183.

    Article  PubMed  CAS  Google Scholar 

  • Schissel SL, Tweedie-Hardman J, Rapp JH, Graham G, Williams KJ, Tabas I. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest 98(1996) 1455–1464.

    Article  PubMed  CAS  Google Scholar 

  • Schuchmann EH, Desnick RJ: Niemann-Pick Diseases Type A and B: Acid sphingomyelinase deficiencies, Vol. 2. New York: McGraw Hill; (1995) 2601–2624.

    Google Scholar 

  • Shayman JA, Lee L, Abe A, Shu L. Inhibitors of glucosylceramide synthase. Methods Enzymol 311(2000) 373–387.

    Article  PubMed  CAS  Google Scholar 

  • Soccio RE, Breslow JL. StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J Biol Chem 278(2003) 22183–22186.

    Article  PubMed  CAS  Google Scholar 

  • Sot J, Aranda FJ, Collado MI, Goni FM, Alonso A. Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study. Biophys J 88(2005) 3368–3380.

    Article  PubMed  CAS  Google Scholar 

  • Spassieva S, Seo JG, Jiang JC, Bielawski J, Alvarez-Vasquez F, Jazwinski SM, Hannun YA, Obeid LM. Necessary role for the Lag1p motif in (dihydro)ceramide synthase activity. J Biol Chem 281(2006) 33931–33938.

    Article  PubMed  CAS  Google Scholar 

  • Tafesse FG, Ternes P, Holthuis JC. The multigenic sphingomyelin synthase family. J Biol Chem 281(2006) 29421–29425.

    Article  PubMed  CAS  Google Scholar 

  • van Meer G. Lipid traffic in animal cells. Annu Rev Cell Biol 5(1989) 247–275.

    Article  PubMed  Google Scholar 

  • Venkataraman K, Riebeling C, Bodennec J, Riezman H, Allegood JC, Sullards MC, Merrill AH, Jr., Futerman AH. Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J Biol Chem 277(2002) 35642–35649.

    Article  PubMed  CAS  Google Scholar 

  • Witting SR, Maiorano JN, Davidson WS. Ceramide enhances cholesterol efflux to apolipoprotein A-I by increasing the cell surface presence of ATP-binding cassette transporter A1. J Biol Chem 278(2003) 40121–40127.

    Article  PubMed  CAS  Google Scholar 

  • Worgall TS, Sturley SL, Seo T, Osborne TF, Deckelbaum RJ. Polyunsaturated fatty acids decrease expression of promoters with sterol regulatory elements by decreasing levels of mature sterol regulatory element-binding protein. J Biol Chem 273(1998) 25537–25540.

    Article  PubMed  CAS  Google Scholar 

  • Worgall TS, Juliano RA, Seo T, Deckelbaum RJ. Ceramide synthesis correlates with the posttranscriptional regulation of the sterol-regulatory element-binding protein. Arterioscler Thromb Vasc Biol 24(2004a) 943–948.

    Article  CAS  Google Scholar 

  • Worgall TS, Davis-Hayman SR, Magana MM, Oelkers PM, Zapata F, Juliano RA, Osborne TF, Nash TE, Deckelbaum RJ. Sterol and fatty acid regulatory pathways in a Giardia lamblia-derived promoter: evidence for SREBP as an ancient transcription factor. J Lipid Res 45(2004b) 981–988.

    Article  CAS  Google Scholar 

  • Zanolari B, Friant S, Funato K, Sutterlin C, Stevenson BJ, Riezman H. Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae. Embo J 19(2000) 2824–2833.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Worgall, T.S. (2008). Regulation of lipid metabolism by sphingolipids. In: Quinn, P.J., Wang, X. (eds) Lipids in Health and Disease. Subcellular Biochemistry, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8830-8_14

Download citation

Publish with us

Policies and ethics