Skip to main content

Dissimilatory and Assimilatory Nitrate Reduction in the Purple Photosynthetic Bacteria

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

Nitrate reduction can be either a dissimilatory or assimilatory process. Nitrate reduction to nitrogen gas via a series of nitrogen oxide intermediates is a dissimilatory process termed denitrification. Denitrification is common among the purple photosynthetic bacteria. While some reduce nitrate to nitrogen gas many are missing components of the denitrification pathway. In the complete denitrifiers, denitrification can be used as an alternative form of respiration when oxygen levels are low. Denitrification can also be used as a mechanism to dispose of excess reducing equivalents. In partial denitrifiers, it is unlikely that denitrification serves a respiratory function. In these bacteria it is likely that the enzymes that are present are used for redox balancing, or to mitigate the toxicity of certain nitrogen oxide intermediates.

Available genome sequences demonstrate that closely related bacteria can have different denitrification capacities. For example, analysis of three strains of Rhodobacter sphaeroides revealed that one is a complete denitrifier, while one of the other strains has two of the four nitrogen oxide reductases enzymes, and the other strain has only one. This suggests that denitrification is selectively modified to best fit each bacterium’s environmental niche and the entire pathway does not have to be present for dissimilatory nitrogen oxide reduction to be beneficial.

Optimal expression of the nitrogen oxide reductases requires the presence of nitrogen oxides and low oxygen. Nitrate along with nitric oxide and nitrous oxide, two of the denitrification intermediates, are effector molecules. Denitrification has also been shown to be under control of the global Reg/Prr regulatory system. This may coordinate expression of denitrification with other energy conservation and redox dissipation processes.

Some photosynthetic bacteria can also reduce nitrate to ammonia, which is then used for assimilatory purposes. As with denitrification, the capacity for nitrate assimilation does not follow any obvious phylogenetic pattern. The genes for nitrate assimilation are expressed when ammonia and other forms of fixed nitrogen are limiting and nitrate is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

cNor:

cytochrome c dependent nitric oxide reductase

Nap:

periplasmic nitrate reductase

Nar:

nitrate reductase

Nas:

assimilatory nitrate reductase

Nir:

nitrite reductase

NO:

nitric oxide

Nor:

nitric oxide reductase

Nos:

nitrous oxide reductase

N-oxides:

nitrogen oxides

qNor:

quinol oxidizing nitric oxide reductase

Rba. :

Rhodobacter

Rps. :

Rhodopseudomonas

Rsb. :

Roseobacter

References

  • Arai H, Mizutani M and Igarashi Y (2003) Transcriptional regulation of the nos genes fornitrous oxide reductase in Pseudomonas aeruginosa. Microbiol 149: 29–36

    CAS  Google Scholar 

  • Arnoux P, Sabaty M, Alric J, Frangioni B, Guigliarelli B, Adriano JM and Pignol D (2003) Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Nat Struct Biol 10: 928–934

    PubMed  CAS  Google Scholar 

  • Averill BA and Tiedje JM (1982) The chemical mechanism of microbial denitrification. FEBS Lett 138: 8–12

    PubMed  CAS  Google Scholar 

  • Axelrod HL and Okamura MY (2005) The structure and function of the cytochrome c 2:reaction center electron transfer complex from Rhodobacter sphaeroides. Photosynth Res 85: 101–114

    PubMed  CAS  Google Scholar 

  • Bartnikas TB, Tosques IE, Laratta WP, Shi J and Shapleigh JP (1997) Characterization of the region encoding the nitric oxide reductase of Rhodobacter sphaeroides 2.4.3. J Bacteriol 179: 3534–3540

    PubMed  CAS  Google Scholar 

  • Bartnikas TB, Wang Y, Bobo T, Veselov A, Scholes CP and Shapleigh JP (2002) Characterization of a member of the NnrR regulon in Rhodobacter sphaeroides 2.4.3 encoding a heme-copper protein. Microbiol 148: 825–833

    CAS  Google Scholar 

  • Bell LC, Richardson DJ and Ferguson SJ (1992) Identification of nitric oxide reductase activity in Rhodobacter capsulatus: The electron transport pathway can either use or bypass both cytochrome c 2 and the cytochrome bc 1 complex. J Gen Micro 138: 437–443

    CAS  Google Scholar 

  • Braun C and Zumft WG (1991) Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide. J Biol Chem 266: 22785–22788

    PubMed  CAS  Google Scholar 

  • Brown K, Prudencio M, Pereira AS, Besson S, Moura JJG, Moura I, Tegoni M and Cambillau C (2000) A novel type of catalytic copper cluster in nitrous oxide reductase. Nat Struct Biol 7: 191–195

    PubMed  CAS  Google Scholar 

  • Cabello P, Pino C, Olmo-Mira MF, Castillo F, Roldan MD and Moreno-Vivian C (2004) Hydroxylamine assimilation by Rhodobacter capsulatus E1F1. Requirement of the hcp gene (hybrid cluster protein) located in the nitrate assimilation nas gene region for hydroxylamine reduction. J Biol Chem 279: 45485–45494

    PubMed  CAS  Google Scholar 

  • Chan YK, McCormick WA and Watson RJ (1997) A new nos gene downstream from nosdfy is essential for dissimilatory reduction of nitrous oxide by Rhizobium (Sinorhizobium) meliloti. Microbiol 143: 2817–2824

    CAS  Google Scholar 

  • Choi PS, Naal Z, Moore C, Casado-Rivera E, Abruna HD, Helmann JD and Shapleigh JP (2006) Assessing the impact of denitrifier-produced nitric oxide on other bacteria. Appl Environ Microbiol 72: 2200–2205

    PubMed  CAS  Google Scholar 

  • Coomber SA, Jones RM, Jordan PM and Hunter CN (1992) A putative anaerobic coproporphrinogen iii oxidase in Rhodobacter sphaeroides. I. Molecular cloning, transposon mutagenesis and sequence analysis of the gene. Mol Microbiol 6: 3159–3169

    PubMed  CAS  Google Scholar 

  • Coyne MS and Tiedje JM (1990) Induction of denitrifying enzymes in oxygen-limited Achromobacter cycloclastes continuous culture. FEMS Microbiol Ecol 73: 263–270

    CAS  Google Scholar 

  • Cramm R, Siddiqui RA and Friedrich B (1997) Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16. J Bacteriol 179: 6769–6777

    PubMed  CAS  Google Scholar 

  • Dixon R and Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2: 621–631

    PubMed  CAS  Google Scholar 

  • Dobao MM, Martinez-Luque M and Castillo F (1993) Nitrate reductase activity in spheroplasts from Rhodobacter capsulatus E1F1 requires a periplasmic protein. Arch Microbiol 160: 471–476

    CAS  Google Scholar 

  • Dobao MM, Martinez-Luque M, Moreno VC and Castillo F (1994) Effect of carbon and nitrogen metabolism on nitrate reductase activity of Rhodobacter capsulatus E1F1. Can J Microbiol 40: 645–650

    Article  CAS  Google Scholar 

  • Doi M and Shioi Y (1991) Enhancement of denitrifying activity in cells of Roseobacter denitrificans grown aerobically in the light. Plant Cell Physiol 32: 365–370

    CAS  Google Scholar 

  • Doi M, Shioi Y, Morita M and Takamiya K (1989) Two types of cytochrome cd 1 in the aerobic photosynthetic bacterium, Erythrobacter sp. Och 114. Eur J Biochem 184: 521–527

    PubMed  CAS  Google Scholar 

  • Dunstan RH, Kelley BC and Nicholas DJ (1982) Fixation of dinitrogen derived from denitrification of nitrate in a photosynthetic bacterium, Rhodopseudomonas sphaeroides forma sp. denitrificans. J Bacteriol 150: 100–104

    PubMed  CAS  Google Scholar 

  • Ellington MJK, Richardson DJ and Ferguson SJ (2003) Rhodobacter capsulatus gains a competitive advantage from respiratory nitrate reduction during light-dark transitions. Microbiol 149: 941–948

    CAS  Google Scholar 

  • Farrar JA, Thompson AJ, Cheesman MR, Dooley DM and Zumft WG (1991) A model of the copper centres of nitrous oxide reductase (Pseudomonas stutzeri). Evidence from optical, EPR and MCD spectroscopy. FEBS Lett 294: 11–15

    PubMed  CAS  Google Scholar 

  • Garber EA and Hollocher TC (1981) 15N tracer studies on the role of NO in denitrification. J Biol Chem 256: 5459–5465

    PubMed  CAS  Google Scholar 

  • Gavira M, Roldan MD, Castillo F and Moreno-Vivian C (2002) Regulation of nap gene expression and periplasmic nitrate reductase activity in the phototrophic bacterium Rhodobacter sphaeroides DSM158. J Bacteriol 184: 1693–1702

    PubMed  CAS  Google Scholar 

  • Gutierrez JC, Ramos F, Ortner L and Tortolero M (1995) nasST, two genes involved in the induction of the assimilatory nitritenitrate reductase operon (nasAB) of Azotobacter vinelandii. Mol Microbiol 18: 579–591

    PubMed  CAS  Google Scholar 

  • Haltia T, Brown K, Tegoni M, Cambillau C, Saraste M, Mattila K and Djinovic-Carugo K (2003) Crystal structure of nitrous oxide reductase from Paracoccus denitrificans at 1.6 Ã… resolution. Biochem J 369: 77–88

    PubMed  CAS  Google Scholar 

  • Haselkorn R, Lapidus A, Kogan Y, Vlcek C, Paces J, Paces V, Ulbrich P, Pecenkova T, Rebrekov D, Milgram A, Mazur M, Cox R, Kyrpides N, Ivanova N, Kapatral V, Los T, Lykidis A, Mikhailova N, Reznik G, Vasieva O and Fonstein M (2001) The Rhodobacter capsulatus genome. Photosynth Res 70: 43–52

    PubMed  CAS  Google Scholar 

  • Hosier JP, Ferguson-Miller S and Mills DA (2006) Energy transduction: Proton transfer through the respiratory complexes. Annu Rev Biochem 75: 165–187

    Google Scholar 

  • Jacobson F, Guo H, Olesen K, Okvist M, Neutze R and Sjolin L (2005) Structures of the oxidized and reduced forms of nitrite reductase from Rhodobacter sphaeroides 2.4.3 at high pH: Changes in the interactions of the type 2 copper. Acta Cryst D 61: 1190–1198

    Google Scholar 

  • Jain R and Shapleigh JP (2001) Characterization of nirV and a gene encoding a novel pseudoazurin in Rhodobacter sphaeroides 2.4.3. Microbiol 147: 2505–2515

    CAS  Google Scholar 

  • Joshi HM and Tabita FR (1996) A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc Natl Acad Sci USA 93: 14515–14520

    PubMed  CAS  Google Scholar 

  • Kastrau DHW, Heiss B, Kroneck PMH and Zumft WG (1994) Nitric oxide reductase from Pseudomonas stutzeri, a novel cytochrome bc complex. Eur J Biochem 222: 293–303

    PubMed  CAS  Google Scholar 

  • Klemme J-H, Chyla I and Preuss M (1980) Dissimilatory nitrate reduction by strains of the facultative phototrophic bacterium Rhodopseudomonas palustris. FEMS Microbiol Lett 9: 137–140

    CAS  Google Scholar 

  • Klepper LA (1987) Nitric oxide emissions from soybean leaves during in vivo nitrate reductase assays. Plant Physiol 85: 96–99

    Article  PubMed  CAS  Google Scholar 

  • Korner H and Zumft WG (1989) Expression of denitrification enzymes in response to the dissolved oxygen and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl Environ Microbiol 55: 1670–1676

    PubMed  CAS  Google Scholar 

  • Korner H, Sofia HJ and Zumft WG (2003) Phylogeny of the bacterial superfamily of CRP-FNR transcription regulators: Exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27: 559–592

    PubMed  CAS  Google Scholar 

  • Kwiatkowski AV, Laratta WP,Toffanin A and Shapleigh JP (1997) Analysis of the role of the nnrR gene product in the response of Rhodobacter sphaeroides 2.4.1 to exogenous nitric oxide. J Bacteriol 179: 5618–5620

    PubMed  CAS  Google Scholar 

  • Laratta WP, Choi PS, Tosques IE and Shapleigh JP (2002) Involvement of the Prrb/Prra two-component system in nitrite respiration in Rhodobacter sphaeroides 2.4.3: Evidence for transcriptional regulation. J Bacteriol 184: 3521–3529

    PubMed  CAS  Google Scholar 

  • Laratta WP, Nanaszko MJ and Shapleigh JP (2006) Electron transfer to nitrite reductase of Rhodobacter sphaeroides 2.4.3: Examination of cytochromes c 2 and c Y Microbiol 152: 1479–1488

    CAS  Google Scholar 

  • Lee YY, Shearer N and Spiro S (2006) Transcription factor Nnr from Paracoccus denitrificans is a sensor of both nitric oxide and oxygen: Isolation of nnr* alleles encoding effector-independent proteins and evidence for a haem-based sensing mechanism. Microbiol 152: 1461–1470

    CAS  Google Scholar 

  • LeGall J, Payne WJ, Morgan TV and DerVartanian D (1979) On the purification of nitrite reductase from Thiobacillus denitrificans and its reaction with nitrite under reducing conditions. Biochem Biophys Res Commun 87: 355–362

    PubMed  CAS  Google Scholar 

  • Liu X, Miller MJ, Joshi MS, Thomas DD and Lancaster JR, Jr. (1998) Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc Natl Acad Sci USA 95: 2175–2179

    PubMed  CAS  Google Scholar 

  • Mackenzie C, Choudhary M, Larimer FW, Predki PF, Stilwagen S, Armitage JP, Barber RD, Donohue TJ, Hosier JP, Newman JE, Shapleigh JP, Sockett RE, Zeilstra-Ryalls J and Kaplan S (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth Res 70: 19–4

    PubMed  CAS  Google Scholar 

  • Martinez-Luque M, Dobao MM and Castillo F (1991) Characterization of the assimilatory and dissimilatory nitrate-reducing systems in Rhodobacter: A comparative study. FEMS Micro Lett 83: 329–334

    Article  CAS  Google Scholar 

  • Matsuda Y, Inamori K, Osaki T, Eguchi A, Watanabe A, Kawabata S, Iba K and Arata H (2002) Nitric oxide-reductase homologue that contains a copper atom andhas cytochrome c-oxidase activity from an aerobic phototrophic bacterium Roseobacter denitrificans. J Biochem (Tokyo) 131: 791–800

    CAS  Google Scholar 

  • McEwan AG, George CL, Ferguson SJ and Jackson JB (1982) A nitrate reductase activity in Rhodopseudomonas capsulata linked to electron transfer and generation of a membrane potential. FEBS Lett 150: 277–280

    CAS  Google Scholar 

  • McEwan AG, Jackson JB and Ferguson SJ (1984) Rationalisation of properties of nitrate reductases in Rhodopseudomonas capsulata. Arch Microbiol 137: 344–49

    CAS  Google Scholar 

  • McEwan AG, Greenfield AJ, Wetzstein HG, Jackson BJ and Ferguson SJ (1985) Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. J Bacteriol 164: 823–830.

    PubMed  CAS  Google Scholar 

  • McGuirl MA, Bollinger JA, Cosper N, Scott RA and Dooley DM (2001) Expression, purification, and characterization of nosl, a novel Cu (I) protein of the nitrous oxide reductase (nos) gene cluster. J Biol Inorg Chem 6: 189–195

    PubMed  CAS  Google Scholar 

  • Michalski WP and Nicholas DJD (1984) The adaptation of Rhodopseudomonas sphaeroides f. sp. denitrificans for growth under denitrifying conditions. J Gen Micro 130: 155–165

    CAS  Google Scholar 

  • Michalski WP and Nicholas DJD (1985) Effects of nitrate, nitrite and diphenylamine on the photosynthetic apparatus of Rhodopseudomonas sphaeroides f. sp. denitrificans. J Gen Micro 131: 1951–1961

    CAS  Google Scholar 

  • Michalski WP and Nicholas DJD (1987) Inhibition of bacteriochlorophyll synthesis in Rhodobacter sphaeroides subsp. denitrificans grown in light under denitrifying conditions. J Bacteriol 169: 4651–4659

    PubMed  CAS  Google Scholar 

  • Michalski W and Nicholas DJD (1988) Identification of two new denitrifying strains of Rhodobacter sphaeroides. FEMS Microbiol Lett 52: 239–244

    Google Scholar 

  • Michalski WP, Miller DJ and Nicholas DJD (1986) Changes in cytochrome composition of Rhodopseudomonas sphaeroides f. sp. denitrificans. Biochim Biophys Acta 849: 304–315

    CAS  Google Scholar 

  • Mitchell DM, Wang Y, Alben JO and Shapleigh JP (1998) Fourier transform infrared analysis of membranes of Rhodobacter sphaeroides 2.4.3 grown under microaerobic and denitrifying conditions. Biochim Biophys Acta 1409: 99–105

    PubMed  CAS  Google Scholar 

  • Moenne-Loccoz P and de Vries S (1998) Structural characterization of the catalytic high-spin heme b of nitric oxide reductase: A resonance Raman study. J Am Chem Soc 120: 5147–5152

    Google Scholar 

  • Moura I and Moura JJG (2001) Structural aspects of denitrifying enzymes. Curr Op Chem Biol 5: 168–175

    CAS  Google Scholar 

  • Nishimura K, Shimada H, Ohta H, Masuda T, Shioi Y and Takamiya K (1996) Expression of the puf operon in an aerobic photosynthetic bacterium, Roseobacter denitrificans. Plant Cell Physiol 37: 153–159

    PubMed  CAS  Google Scholar 

  • Oh J-I and Kaplan S (2001) Generalized approach to the regulation and integration of gene expression. Mol Microbiol 39: 1116–1123

    PubMed  CAS  Google Scholar 

  • Oh JI, Eraso JM and Kaplan S (2000) Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 182: 3081–3087

    PubMed  CAS  Google Scholar 

  • Oh J-I, Ko I-J and Kaplan S (2001) The default state of the membrane-localized histidine kinase PrrB of Rhodobacter sphaeroides 2.4.1 is in the kinase-positive mode. J Bacteriol 183: 6807–6814

    PubMed  CAS  Google Scholar 

  • Olesen KO, Veselov A, Zhao Y, Wang Y, Danner B, Scholes CP and Shapleigh JP (1998) Spectroscopic, kinetic and electrochemical characterization of heterologously expressed wild type and mutant forms of copper-containing nitrite reductase from Rhodobacter sphaeroides 2.4.3. Biochem 37: 6086–6094

    CAS  Google Scholar 

  • Olmo-Mira MF, Cabello P, Pino C, Martinez-Luque M, Richardson DJ, Castillo F, Roldan MD and Moreno-Vivian C (2006) Expression and characterization of the assimilatory NADH-nitrite reductase from the photo trophic bacterium Rhodobacter capsulatus E1F1. Arch Microbiol 186: 339–344

    PubMed  CAS  Google Scholar 

  • Payne WJ (1981) Denitrification. John Wiley & Sons, New York

    Google Scholar 

  • Pearson IV, Page MD, van Spanning RJ and Ferguson SJ (2003) A mutant of Paracoccus denitrificans with disrupted genes coding for cytochrome c 550 and pseudoazurin establishes these two proteins as the in vivo electron donors to cytochrome cd 1 nitrite reductase. J Bacteriol 185: 6308–6315

    PubMed  CAS  Google Scholar 

  • Pino C, Olmo-Mira F, Cabello P, Martinez-Luque M, Castillo F, Roldan MD and Moreno-Vivian C (2006) The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1. Biochem Soc Trans 34: 127–129

    PubMed  CAS  Google Scholar 

  • Preisig O, Zufferey R, Thony-Meyer L, Appleby CA and Hennecke H (1996) A high-affinity cbb 3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 178: 1532–1538

    PubMed  CAS  Google Scholar 

  • Preuss M and Klemme J-H (1983) Purification and characterization of a dissimilatory nitrite reductase from the phototrophic bacterium Rhodopseudomonas palustris. Z Naturforsch C 38: 933–938

    PubMed  CAS  Google Scholar 

  • Richardson DJ, McEwan AG, Jackson JB and Ferguson SJ (1989) Electron transport pathways to nitrous oxide in Rhodobacter species. Eur J Biochem 185: 659–669

    PubMed  CAS  Google Scholar 

  • Richardson DJ, Bell LC, McEwan AG, Jackson JB and Ferguson SJ (1991) Cytochrome c 2 is essential for electron transfer to nitrous oxide reductase from physiological substrates in Rhodobacter capsulatus and can act as an electron donor to the reductase in vitro. Eur J Biochem 199: 677–683

    PubMed  CAS  Google Scholar 

  • Richardson DJ, Berks BC, Russell DA, Spiro S and Taylor CJ (2001) Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58: 165–178

    PubMed  CAS  Google Scholar 

  • Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MS, Op den Camp HJ, Derksen JW, Pina-Ochoa E, Eriksson SP, Nielsen LP, Revsbech NP, Cedhagen T and van der Zwaan GJ (2006) Evidence for complete denitrification in a benthic foraminifer. Nature 443: 93–96

    PubMed  CAS  Google Scholar 

  • Sabaty M, Gans P and Verméglio A (1993) Inhibition of nitrate reduction by light and oxygen in Rhodobacter sphaeroides forma sp. denitrificans. Arch Microbiol 159: 153–159

    CAS  Google Scholar 

  • Sabaty M, Jappe J, Olive J and Verméglio A (1994) Organization of electron transport components in Rhodobacter sphaeroides forma sp. denitrificans whole cells. Biochim Biophys Acta 1187: 313–323

    CAS  Google Scholar 

  • Sabaty M, Schwintner C, Cahors S, Richaud P and Verméglio A (1999) Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106. J Bacteriol 181: 6028–6032

    PubMed  CAS  Google Scholar 

  • Saraste M and Castresana J (1994) Cytochrome oxidase evolvedby tinkering with denitrification enzymes. FEBS Lett 341: 1–4

    PubMed  CAS  Google Scholar 

  • Sato K, Okubo A and Yamazaki S (1999) Anaerobic purification and characterization of nitrous oxide reductase from Rhodobacter sphaeroides f. sp. denitrificans IL106. J Biochem (Tokyo) 125: 864–868

    CAS  Google Scholar 

  • Satoh T (1977) Light-activated, -inhibited and -independent denitrification by a denitrifying phototrophic bacterium. Arch Microbiol 115: 293–298

    PubMed  CAS  Google Scholar 

  • Satoh T, Hoshino Y and Kitamura H (1976) Rhodopseudomonas sphaeroides forma sp. denitrificans a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides. Arch Microbiol 108: 265–269

    PubMed  CAS  Google Scholar 

  • Saunders NF, Hornberg JJ, Reijnders WN, Westerhoff HV, de Vries S and van Spanning RJ (2000) The nosX and nirX proteins of Paracoccus denitrificans are functional homologues: Their role in maturation of nitrous oxide reductase. J Bacteriol 182: 5211–5217

    PubMed  CAS  Google Scholar 

  • Sawada E, Satoh T and Kitamura H (1978) Purification and properties of a dissimilatory nitrite reductase of a denitrifying phototrophic bacterium. Plant Cell Physiol 19: 1339–1351

    CAS  Google Scholar 

  • Shapleigh JP (2007) The denitrifying prokaryotes. In: Dworkin M (ed) The Prokaryotes: A Handbook on the Biology of Bacteria, Vol 2: Ecophysiology and Biochemistry, pp 769–792. Springer-Verlag, New York

    Google Scholar 

  • Shioi Y, Doi M, Arata H and Takamiya K (1988) A denitrifying activity in an aerobic photosynthetic bacterium, Erythrobacter sp. strain och 114. Plant Cell Physiol 29: 861–865

    CAS  Google Scholar 

  • Strous M, Fuerst JA, Kramer EH, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG and Jetten MS (1999) Missing lithotroph identified as new planctomycete. Nature 400: 446–449

    PubMed  CAS  Google Scholar 

  • Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJ, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MS, Wagner M and Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440: 790–794

    PubMed  Google Scholar 

  • Swingley WD, Gholba S, Mastrian SD, Matthies HJ, Hao J, Ramos H, Acharya CR, Conrad AL, Taylor HL, Dejesa LC, Shah MK, O’Huallachain M E, Lince MT, Blankenship RE, Beatty JT and Touchman JW (2007) The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic as opposed to photosynthetic metabolism. J Bacteriol 2007 189: 683–90

    PubMed  CAS  Google Scholar 

  • Tabata A,Yamamoto I, Matsuzaki M and Satoh T (2005) Differential regulation of periplasmic nitrate reductase gene (napKEFDABC) expression between aerobiosis and anaerobiosis with nitrate in a denitrifying phototroph Rhodobacter sphaeroides f. sp. denitrificans. Arch Microbiol 184: 108–116

    PubMed  CAS  Google Scholar 

  • Taubner LM, McGuirl MA, Dooley DM and Copie V (2006) Structural studies of apo NosL, an accessory protein of the nitrous oxide reductase system: Insights from structural homology with MerB, a mercury resistance protein. Biochem 45: 12240–12252

    CAS  Google Scholar 

  • Tocheva EI, Rosell FI, Mauk AG and Murphy ME (2004) Sideon copper-nitrosyl coordination by nitrite reductase. Science 304: 867–870

    PubMed  CAS  Google Scholar 

  • Tosques IE, Kwiatkowski AV, Shi J and Shapleigh JP (1997) Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. J Bacteriol 179: 1090–1095

    PubMed  CAS  Google Scholar 

  • Usov OM, Sun Y, Grigoryants VM, Shapleigh JP and Scholes CP (2006) EPR-ENDOR of the Cu(I)NO complex of nitrite reductase. J Am Chem Soc 128: 13102–13111

    PubMed  CAS  Google Scholar 

  • Vollack K and Zumft W (2001) Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri. J Bacteriol 183: 2516–2526

    PubMed  CAS  Google Scholar 

  • Watmough NJ, Butland G, Cheesman MR, Moir JWB, Richardson DJ and Spiro S (1999) Nitric oxide in bacteria: Synthesis and consumption. Biochim Biophys Acta 1411: 456–474

    PubMed  CAS  Google Scholar 

  • Wherland S, Farver O and Pecht I (2005) Intramolecular electron transfer in nitrite reductases. Chem Phys Chem 6: 805–812

    PubMed  CAS  Google Scholar 

  • Wink D and Mitchell J (1998) Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25: 434–456

    PubMed  CAS  Google Scholar 

  • Wunsch P and Zumft WG (2005) Functional domains of NosR, a novel transmembrane iron-sulfur flavoprotein necessary for nitrous oxide respiration. J Bacteriol 187: 1992–2001

    PubMed  CAS  Google Scholar 

  • Yin S, Fuangthong M, Laratta WP and Shapleigh JP (2003) Use of a green fluorescent protein-based reporter fusion for detection of nitric oxide produced by denitrifiers. Appl Environ Microbiol 69: 3938–3944

    PubMed  CAS  Google Scholar 

  • Zhao Y, Lukoyanov DA, Toropov YV, Wu K, Shapleigh JP and Scholes CP (2002) Catalytic function and local proton structure at the type 2 copper of nitrite reductase: The correlation of enzymatic pH dependence, conserved residues and proton hyperfme structure. Biochem 41: 7464–7474

    CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61: 533–616

    PubMed  CAS  Google Scholar 

  • Zumft WG (2002) Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator family. J Mol Microbiol Biotechnol 4: 277–286

    PubMed  CAS  Google Scholar 

  • Zumft WG (2005) Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type. J Inorg Biochem 99: 194–215

    PubMed  CAS  Google Scholar 

  • Zumft WG and Kroneck PM (2006) Respiratory transformation of nitrous oxide (N(2)O) to dinitrogen by bacteria and archaea. Adv Microb Physiol 52: 107–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Shapleigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Shapleigh, J.P. (2009). Dissimilatory and Assimilatory Nitrate Reduction in the Purple Photosynthetic Bacteria. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_31

Download citation

Publish with us

Policies and ethics