Skip to main content

Roles of reactive oxygen species in interactions between plants and pathogens

  • Chapter

Abstract

The production of reactive oxygen species (ROS) by the consumption of molecular oxygen during host–pathogen interactions is termed the oxidative burst. The most important ROS are singlet oxygen (1O2), the hydroxyperoxyl radical (HO2·), the superoxide anion \(\left( {{\text{O}}_{\text{2}} ^ - } \right)\), hydrogen peroxide (H2O2), the hydroxyl radical (OH-) and the closely related reactive nitrogen species, nitric oxide (NO). These ROS are highly reactive, and therefore toxic, and participate in several important processes related to defence and infection. Furthermore, ROS also play important roles in plant biology both as toxic by-products of aerobic metabolism and as key regulators of growth, development and defence pathways. In this review, we will assess the different roles of ROS in host–pathogen interactions with special emphasis on fungal and Oomycete pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Able, A. J. (2003). Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma, 221, 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Ali, R., Ma, W., Lemtiri-Chlieh, F., Tsaltas, D., Leng, Q., von Bodman, S., et al. (2007). Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. The Plant Cell, 19, 1081–1095.

    Article  PubMed  CAS  Google Scholar 

  • Allan, A. C., & Fluhr, R. (1997). Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. The Plant Cell, 9, 1559–1572.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, M. E., Pennell, R. I., Meijer, P.-J., Ishikawa, A., Dixon, R. A., & Lamb, C. (1998). Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92, 773–784.

    Article  PubMed  CAS  Google Scholar 

  • Amirsadeghi, S., Robson, C. A., & Vanlerberghe, G. C. (2007). The role of the mitochondrion in plant responses to biotic stress. Physiologia Plantarum, 129, 253–266.

    Article  CAS  Google Scholar 

  • An, Q., Ehlers, K., Kogel, K.-H., van Bel, A. J. E., & Hükelhoven, R. (2006). Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytologist, 172, 563–576.

    Article  PubMed  CAS  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  PubMed  CAS  Google Scholar 

  • Apostol, I., Heinstein, P. F., & Low, P. S. (1989). Rapid induction of an oxidative burst during elicitation of cultured plant cells. Plant Physiology, 90, 109–116.

    Article  PubMed  CAS  Google Scholar 

  • Ashtamker, C., Kiss, V., Sagi, M., Davydov, O., & Fluhr, R. (2007). Diverse subcellular locations of cryptogein-induced reactive oxygen species production in tobacco Bright Yellow-2 cells. Plant Physiology, 143, 1817–1826.

    Article  PubMed  CAS  Google Scholar 

  • Auh, C. K., & Murphy, T. M. (1995). Plasma-membrane redox enzyme is involved in the synthesis of \({\text{O}}_{\text{2}} ^ - \) and H2O2 by Phytophthora elicitor-stimulated rose cells. Plant Physiology, 107, 1241–1247.

    PubMed  CAS  Google Scholar 

  • Babitha, M. P., Prakash, H. S., & Shetty, H. S. (2004). Purification and properties of lipoxygenase induced in downy mildew resistant pearl millet seedlings due to infection with Sclerospora graminicola. Plant Science, 166, 31–39.

    Article  CAS  Google Scholar 

  • Baker, C. J., & Orlandi, E. W. (1995). Active oxygen in plant pathogenesis. Annual Review of Phytopathology, 33, 299–321.

    Article  PubMed  CAS  Google Scholar 

  • Baker, C. J., Orlandi, E. W., & Mock, N. M. (1993). Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiology, 102, 1341–1344.

    PubMed  CAS  Google Scholar 

  • Bedard, K., Lardy, B., & Krause, K.-H. (2007). NOX family NADPH oxidases: Not just in mammals. Biochimie, 89, 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  • Bindschedler, L. V., Dewdney, J., Blee, K. A., Stone, J. M., Asai, T., Plotnikov, J., et al. (2006). Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. The Plant Journal, 47, 851–863.

    Article  PubMed  CAS  Google Scholar 

  • Blumwald, E., Aharon, G. S., & Lam, B. C.-H. (1998). Early signal transduction pathways in plant–pathogen interactions. Trends in Plant Science, 3, 342–346.

    Article  Google Scholar 

  • Bolwell, G. P., Bindschedler, L. V., Blee, K. A., Butt, V. S., Davies, D. R., Gardner, S. L., et al. (2002). The apoplastic oxidative burst in response to biotic stress in plants: A three-component system. Journal of Experimental Botany, 53, 1367–1376.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D. J., Kjellbom, P., & Lamb, C. J. (1992). Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall structural protein: A novel, rapid plant defense response. Cell, 70, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Carter, C., Healy, R., O’Tool, N. M., Naqvi, S. M. S., Ren, G., Park, S., et al. (2007). Tobacco nectaries express a novel NADPH oxidase implicated in the defense of floral reproductive tissues against microorganisms. Plant Physiology, 143, 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Chandra, S., Martin, G. B., & Low, P. S. (1996). The Pto kinase mediates a signaling pathway leading to the oxidative burst in tomato. Proceedings of the National Academy of Sciences of the United States of America, 93, 13393–13397.

    Article  PubMed  CAS  Google Scholar 

  • Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host–microbe interactions: Shaping the evolution of the plant immune response. Cell, 124, 803–814.

    Article  PubMed  CAS  Google Scholar 

  • Collins, N. C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J. L., et al. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 425, 973–977.

    Article  PubMed  CAS  Google Scholar 

  • Cona, A., Rea, G., Angelini, R., Frederico, R., & Tavaldorak, P. (2006). Functions of amine oxidases in plant development and defence. Trends in Plant Science, 11, 80–89.

    Article  PubMed  CAS  Google Scholar 

  • Custers, J. H. H. V., Harrison, S. J., Sela-Buurlage, M. B., van Deventer, E., Lageweg, W., Howe, P. W., et al. (2004). Isolation and characterisation of a class of carbohydrate oxidases from higher plants, with a role in active defence. Plant Journal, 39, 147–160.

    Article  PubMed  CAS  Google Scholar 

  • Dat, J. F., Pellinen, R., Beeckman, T., Van de Cotte, B., Langebartels, C., Kangasjärvi, J., et al. (2003). Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. The Plant Journal, 33, 621–632.

    Article  PubMed  CAS  Google Scholar 

  • Deepak, S. A., Ishii, H., & Park, P. (2006). Acibenzolar-S-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack. Physiological and Molecular Plant Pathology, 69, 52–61.

    Article  CAS  Google Scholar 

  • Delledonne, M., Murgia, I., Ederle, D., Sbicego, P. F., Biondani, A., Polverari, A., et al. (2002). Reactive oxygen intermediates modulate nitric oxide signaling in the plant hypersensitive disease-resistance response. Plant Physiology and Biochemistry, 40, 605–610.

    Article  CAS  Google Scholar 

  • Delledonne, M., Xia, Y., Dixon, R. A., & Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature, 394, 585–588.

    Article  PubMed  CAS  Google Scholar 

  • Delledonne, M., Zeier, J., Marocco, A., & Lamb, C. (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America, 98, 13454–13459.

    Article  PubMed  CAS  Google Scholar 

  • Desikan, R., Clarke, A., Hancock, J. T., & Neill, S. J. (1999). H2O2 activates a MAP kinase-like enzymes in Arabidopsis thaliana suspension cultures. Journal of Experimental Botany, 50, 1863–1866.

    Article  CAS  Google Scholar 

  • Dorey, S., Kopp, M., Geoffroy, P., Fritig, B., & Kauffmann, S. (1999). Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation or scopoletin consumption in cultured tobacco cells treated with elicitin. Plant Physiology, 121, 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Enyedi, A. J., Yalpani, N., Silverman, P., & Raskin, I. (1992). Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proceedings of the National Academy of Sciences of the United States of America, 89, 2480–2484.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira, R. B., Monteiro, S., Freitas, R., Santos, C. N., Chen, Z., Batista, L. M., et al. (2007). The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology, 8, 677–700.

    Article  CAS  Google Scholar 

  • Floryszak-Wieczorek, J., Arasimowicz, M., Milczarek, G., Jelen, H., & Jackowiak, H. (2007). Only an early nitric oxide burst and the following wave of secondary nitric oxide generation enhanced effective defence responses of pelargonium to a necrotrophic pathogen. New Phytologist, 175, 718–730.

    Article  PubMed  CAS  Google Scholar 

  • Gil-ad, N. L., & Mayer, A. M. (1999). Evidence for rapid breakdown of hydrogen peroxide by Botrytis cinerea. FEMS Microbiology Letters, 176, 455–461.

    Article  CAS  Google Scholar 

  • Glazner, J. A., Orlandi, E. W., & Baker, C. J. (1996). The active oxygen response of cell suspensions to incompatible bacteria is not sufficient to cause hypersensitive cell death. Plant Physiology, 110, 759–763.

    Google Scholar 

  • Goodwin, P. H., Li, J., & Jin, S. (2001). A catalase gene of Colletotrichum gloeosporioides f. sp. malvae is highly expressed during the necrotrophic phase of infection of round-leaved mallow, Malva pusilla. FEMS Microbiology Letters, 202, 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Govrin, E. M., & Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10, 751–757.

    Article  PubMed  CAS  Google Scholar 

  • Grant, J. J., Yun, B.-W., & Loake, G. J. (2000). Oxidative burst and cognate redox signalling reported by luciferase imaging: Identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. The Plant Journal, 24, 569–582.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J. T. (1997). Programmed cell death in plant–pathogen interactions. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 525–545.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J. T., & Yao, N. (2004). The role and regulation of programmed cell death in plant–pathogen interactions. Cellular Microbiology, 6, 201–211.

    Article  PubMed  CAS  Google Scholar 

  • Heitefuss, R. (1997). Cell wall modification in relation to resistance. In H. Hartleb, R. Heitefuss, & H.-H. Hoppe (Eds.), Resistance of crop plants against fungi (pp. 100–125). Jena: Gustav Fischer.

    Google Scholar 

  • Hirt, H. (1997). Multiple roles of MAP kinases in plant signal transduction. Trends in Plant Science, 2, 11–15.

    Article  Google Scholar 

  • Hoeberichts, F. A., ten Have, A., & Woltering, E. J. (2003). A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta, 217, 517–522.

    Article  PubMed  CAS  Google Scholar 

  • Hoeberichts, F. A., & Woltering, E. J. (2003). Multiple mediators of plant programmed cell death: Interplay of conserved cell death mechanisms and plant-specific regulators. BioEssays, 25, 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Hu, X., Bidney, D. L., Yalpani, N., Duvick, J. P., & Crasta, O. (2003). Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology, 133, 170–181.

    Article  PubMed  CAS  Google Scholar 

  • Hückelhoven, R., & Kogel, K.-H. (2003). Reactive oxygen intermediates in plant microbe interactions: Who is who in powdery mildew resistance? Planta, 216, 891–902.

    PubMed  Google Scholar 

  • Iwai, T., Seo, S., Mitsuhara, I., & Ohashi, Y. (2007). Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants. Plant and Cell Physiology, 48, 915–924.

    Article  PubMed  CAS  Google Scholar 

  • Iwano, M., Che, F.-S., Goto, K., Tanaka, N., Takayama, S., & Isogai, A. (2002). Electron microscopic analysis of the H2O2 accumulation preceding hypersensitive cell death induced by an incompatible strain of Pseudomonas avenae in cultured rice cells. Molecular Plant Pathology, 3, 1–8.

    Article  CAS  Google Scholar 

  • Jabs, T., Dietrich, R. A., & Dangl, J. L. (1996). Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science, 273, 1853–1856.

    Article  PubMed  CAS  Google Scholar 

  • Jabs, T., Tschöpe, M., Colling, C., Hahlbrock, K., & Scheel, D. (1997). Elicitor-stimulated ion fluxes and \({\text{O}}_{\text{2}} ^ - \) from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proceedings of the National Academy of Sciences of the United States of America, 94, 4800–4805.

    Article  PubMed  CAS  Google Scholar 

  • Jalali, B. L., Bhargava, S., & Kamble, A. (2006). Signal transduction and transcriptional regulation of plant defence responses. Journal of Phytopathology, 154, 65–74.

    Article  CAS  Google Scholar 

  • Jørgensen, H. J. L., de Neergaard, E., & Smedegaard-Petersen, V. (1993). Histological examination of the interaction between Rhynchosporium secalis and susceptible and resistant cultivars of barley. Physiological and Molecular Plant Pathology, 42, 345–358.

    Article  Google Scholar 

  • Jørgensen, H. J. L., Lübeck, P. S., Thordal-Christensen, H., de Neergaard, E., & Smedegaard-Petersen, V. (1998). Mechanisms of induced resistance in barley against Drechslera teres. Phytopathology, 88, 698–707.

    Article  Google Scholar 

  • Kariola, T., Brader, G., Li, J., & Palva, E. T. (2005). Chlorophyllose 1, a damage control enzyme, affects the balance between defense pathways in plants. The Plant Cell, 17, 282–294.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, T., Henmi, K., Ono, E., Hatakeyama, S., Iwano, M., Satoh, H., et al. (1999). The small GTP-binding protein Rac is a regulator of cell death in plants. Proceedings of the National Academy of Sciences of the United States of America, 96, 10922–10926.

    Article  PubMed  CAS  Google Scholar 

  • Klessig, D. F., Durner, J., Noad, R., Navarre, D. A., Wendehenne, D., Kumar, D., et al. (2000). Nitric oxide and salicylic acid signaling in plant defense. Proceedings of the National Academy of Sciences of the United States of America, 97, 8849–8855.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, M., Ohura, I., Kawakita, K., Yokota, N., Fujiwara, M., Shimamoto, K., et al. (2007). Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. The Plant Cell, 19, 1065–1080.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, J., Hückelhoven, R., Beckhove, U., Nagarajan, S., & Kogel, K.-H. (2001). A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Phytopathology, 91, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Kumudini, B. S., & Shetty, H. S. (2002). Association of lignification and callose deposition with host cultivar resistance and induced systemic resistance of pearl millet to Sclerospora graminicola. Australasian Plant Pathology, 32, 157–164.

    Article  Google Scholar 

  • Kużniak, E., & Skłodowska, M. (2005). Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta, 222, 192–200.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E. (2004). Controlled cell death, plant survival and development. Nature Reviews in Molecular Cell Biology, 5, 305–315.

    Article  CAS  Google Scholar 

  • Lam, E., Kato, N., & Lawton, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature, 411, 848–853.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 251–275.

    Article  PubMed  CAS  Google Scholar 

  • Legendre, L., Heinstein, P. F., & Low, P. S. (1992). Evidence for the participation of GTP-binding proteins in the elicitation of rapid oxidative burst in cultured soybean cells. Journal of Biological Chemistry, 267, 20140–20147.

    PubMed  CAS  Google Scholar 

  • Legendre, L., Rueter, S., Heinstein, P. S., & Low, P. S. (1993). Characterisation of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiology, 102, 233–240.

    PubMed  CAS  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Levy, E., Eyal, Z., & Hochman, A. (1992). Purification and characterization of a catalase–peroxidase from the fungus Septoria tritici. Archives of Biochemistry and Biophysics, 296, 321–327.

    Article  PubMed  CAS  Google Scholar 

  • Li, A. L., Wang, M. L., Zhou, R. H., Kong, X. Y., Huo, N. X., Wang, W. S., et al. (2005). Comparative analysis of early H2O2 accumulation in compatible and incompatible wheat–powdery mildew interactions. Plant Pathology, 54, 308–316.

    Article  CAS  Google Scholar 

  • Li, J., Zhang, Z.-G., Ji, R., Wang, Y.-C., & Zheng, X.-B. (2006). Hydrogen peroxide regulates elicitor PB90-induced cell death and defense in non-heading Chinese cabbage. Physiological and Molecular Plant Pathology, 67, 220–230.

    Article  CAS  Google Scholar 

  • Link, T., Lohaus, G., Heiser, I., Mendgen, K., Hahn, M., & Voegele, R. T. (2005). Characterization of a novel NADP+-dependent D-arabitol dehydrogenase from the plant pathogen Uromyces fabae. Biochemical Journal, 389, 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Liu, G., Greenshields, D. L., Sammynaiken, R., Hirji, R. N., Selvaraj, G., & Wei, Y. (2007). Targeted alterations in iron homeostasis underlie plant defense responses. Journal of Cell Science, 120, 596–605.

    Article  PubMed  CAS  Google Scholar 

  • Lorrain, S., Vailleau, F., Balagué, C., & Roby, D. (2003). Lesion mimic mutants: Keys for deciphering cell death and defense pathways in plants? Trends in Plant Science, 8, 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Małolepsza, U. (2005). Spatial and temporal variation of reactive oxygen species and antioxidant enzymes in o-hydroxyethylorutin-treated tomato leaves inoculated with Botrytis cinerea. Plant Pathology, 54, 317–324.

    Article  CAS  Google Scholar 

  • Małolepsza, U., & Urbanek, H. (2002). o-Hydroxyethylorutin-mediated enhancement of tomato resistance to Botrytis cinerea depends on a burst of reactive oxygen species. Journal of Phytopathology, 150, 616–624.

    Article  Google Scholar 

  • Mateo, A., Mühlenbock, P., Rustérucci, C., Chang, C. C.-C., Miszalski, Z., Karpinska, B., et al. (2004). LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiology, 136, 2818–2830.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, A. M., Staples, R. C., & Gil-ad, N. L. (2001). Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry, 58, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • McAinsh, M. R., Clayton, H., Mansfield, T. A., & Hetherington, A. M. (1996). Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiology, 111, 1031–1042.

    PubMed  CAS  Google Scholar 

  • McDowell, J. M., & Dangl, J. L. (2000). Signal transduction in the plant immune response. Trends in Biochemical Science, 25, 79–82.

    Article  CAS  Google Scholar 

  • Mellersh, D. G., Foulds, I. V., Higgens, V. J., & Heath, M. C. (2002). H2O2 plays different roles in determining penetration failure in three diverse plant–fungal interactions. The Plant Journal, 29, 257–268.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Herr, E. H., Orvar, B. L., van Camp, W., Willekens, H., Inzé, D., et al. (1999). Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proceedings of the National Academy of Sciences of the United States of America, 96, 14165–14170.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). The reactive oxygen gene network in plants. Trends in Plant Science, 9, 490–498.

    Article  PubMed  CAS  Google Scholar 

  • Moerschbacher, B. M., & Reisener, H.-J. (1997). The hypersensitive resistance reaction. In H. Hartleb, R. Heitefuss, & H.-H. Hoppe (Eds.), Resistance of crop plants against fungi (pp. 126–158). Jena: Gustav Fischer.

    Google Scholar 

  • Montillet, J.-L., Chamnongpol, S., Rustérucci, C., Dat, J., Van de Cotte, B., Agnel, J.-P., et al. (2005). Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiology, 138, 1516–1526.

    Article  PubMed  CAS  Google Scholar 

  • Mur, L. A. J., Carver, T. L. W., & Prats, E. (2006). NO way to live; the various roles of nitric oxide in plant–pathogen interactions. Journal of Experimental Botany, 57, 489–505.

    Article  PubMed  CAS  Google Scholar 

  • Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D., & Hancock, J. T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany, 53, 1237–1247.

    Article  PubMed  CAS  Google Scholar 

  • Nurnberger, T. M., Nennsteil, O., Jabs, T., Sacks, W. R., Hahlbrock, K., & Scheel, D. (1994). High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell, 78, 449–460.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, R. P., & Ipcho, S. V. S. (2004). Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Molecular Plant Pathology, 4, 347–352.

    Article  Google Scholar 

  • Olson, P. D., & Varner, J. E. (1993). Hydrogen peroxide and lignification. The Plant Journal, 4, 887–892.

    Article  CAS  Google Scholar 

  • Op den Camp, R. G. L., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C., Danon, A., et al. (2003). Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. The Plant Cell, 15, 2320–2332.

    Article  PubMed  CAS  Google Scholar 

  • Pei, Z.-M., Murata, Y., Benning, G., Thomine, S., Klüsener, B., Allen, G. J., et al. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 406, 731–734.

    Article  PubMed  CAS  Google Scholar 

  • Peng, M., & Kuc, J. (1992). Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology, 82, 696–699.

    Article  CAS  Google Scholar 

  • Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., et al. (2000). Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell, 103, 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Price, A., Knight, M., Knight, H., Cuin, T., Tomos, D., & Ashenden, T. (1996). Cytosolic calcium and oxidative plant stress. Biochemical Society Transactions, 24, 479–483.

    PubMed  CAS  Google Scholar 

  • Price, A. H., Taylor, A., Ripley, S. J., Griffiths, A., Trewavas, A. J., & Knight, M. R. (1994). Oxidative signals in tobacco increase cytosolic calcium. The Plant Cell, 6, 1301–1310.

    Article  PubMed  CAS  Google Scholar 

  • Ren, D., Yang, K.-Y., Li, G.-J., Liu, Y., & Zhang, S. (2006). Activation of Ntf4, a tobacco mitogen-activated protein kinase, during plant defence response and its involvement in hypersensitive response-like cell death. Plant Physiology, 141, 1482–1493.

    Article  PubMed  CAS  Google Scholar 

  • Repka, V. (2002). Hydrogen peroxide generated via the octadecanoid pathway is neither necessary nor sufficient for methyl jasmonate-induced hypersensitive cell death in woody plants. Biologia Plantarum, 45, 105–115.

    Article  CAS  Google Scholar 

  • Sasabe, M., Takeuchi, K., Kamoun, S., Ichinose, Y., Govers, F., Toyoda, K., et al. (2000). Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. European Journal of Biochemistry, 267, 5005–5013.

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Lefert, P. (2004). Knocking on the heaven’s wall: Pathogenesis of and resistance to biotrophic fungi at the cell wall. Current Opinion in Plant Biology, 7, 377–383.

    Article  PubMed  CAS  Google Scholar 

  • Shah, J. (2003). The salicylic acid loop in plant defense. Current Opinion in Plant Biology, 6, 365–371.

    Article  PubMed  CAS  Google Scholar 

  • Shailashree, S., Kini, K. R., Deepak, S., Kumudini, B. S., & Shetty, H. S. (2004). Accumulation of hydroxyproline-rich glycoproteins in pearl millet seedlings in response to Sclerospora graminicola infection. Plant Science, 167, 1227–1234.

    Article  CAS  Google Scholar 

  • Shetty, N. P., Kristensen, B. K., Newman, M.-A., Møller, K., Gregersen, P. L., & Jørgensen, H. J. L. (2003). Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiological and Molecular Plant Pathology, 62, 333–346.

    Article  CAS  Google Scholar 

  • Shetty, N. P., Mehrabi, R., Lütken, H., Haldrup, A., Kema, G. H. J., Collinge, D. B., et al. (2007). Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytologist, 174, 637–647.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K. (2002). Map kinase cascade in elicitor signal transduction. Journal of Plant Research, 115, 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Thatcher, L. F., Anderson, J. P., & Singh, K. B. (2005). Plant defence responses: What have we learnt from Arabidopsis? Functional Plant Biology, 32, 1–19.

    Article  CAS  Google Scholar 

  • Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. The Plant Journal, 11, 1187–1194.

    Article  CAS  Google Scholar 

  • Torres, M. A., Dangl, J. L., & Jones, J. D. G. (2002). Arabidopsis gp91 phox homologues, AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences of the United States of America, 99, 517–522.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2005). Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nature Genetics, 37, 1130–1134.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141, 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Trujillo, M., Altschmeid, L., Schweizer, P., Kogel, K.-H., & Hückelhoven, R. (2006). Respiratory Burst Oxidase Homologue A of barley contributes to penetration by the powdery mildew fungus Blumeria graminis f. sp. hordei. Journal of Experimental Botany, 57, 3781–3791.

    Article  PubMed  CAS  Google Scholar 

  • Unger, C., Kleta, S., Jandl, G., & v. Tiedemann, A. (2005). Suppression of the defence-related oxidative burst in bean leaf tissue and bean suspension cells by the necrotrophic pathogen Botrytis cinerea. Journal of Phytopathology, 153, 15–26.

    Article  CAS  Google Scholar 

  • Urquhart, W., Gunawardena, A. H. L. A. N., Moeder, W., Ali, R., Berkowitz, G. A., & Yoshioka, K. (2007). The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Molecular Biology, 65, 747–761.

    Article  PubMed  CAS  Google Scholar 

  • Van Breusegem, F., & Dat, J. F. (2006). Reactive oxygen species in plant cell death. Plant Physiology, 141, 384–390.

    Article  PubMed  CAS  Google Scholar 

  • Van der Vlugt-Bergmans, C. J. B., Wagemakers, C. A. M., Dees, D. C. T., & Van Kan, J. A. L. (1997). Catalase A from Botrytis cinerea is not expressed during infection on tomato leaves. Physiological and Molecular Plant Pathology, 50, 1–15.

    Article  Google Scholar 

  • Voegele, R. T., Hahn, M., Lohaus, G., Link, T., Heiser, I., & Mendgen, K. (2005). Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae. Plant Physiology, 137, 190–198.

    Article  PubMed  CAS  Google Scholar 

  • Von Gönner, M., & Schlösser, E. (1992). Effect of radical scavengers on pathogenesis in the host–parasite-system Avena sativaDrechslera avenae. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 99, 617–625.

    Google Scholar 

  • Walters, D. R. (2003). Polyamines and plant disease. Phytochemistry, 64, 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Wu, G. S., Short, B. J., Lawrence, E. B., Levine, E. B., Fitzsimmons, K. C., & Shah, D. M. (1995). Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. The Plant Cell, 7, 1357–1368.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S. Q., & Klessig, D. F. (1998). Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by Tobacco mosaic virus. Proceedings of the National Academy of Sciences of the United States of America, 95, 7433–7438.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Liu, Y., & Klessig, D. F. (2000). Multiple levels of tobacco WIPK activation during the induction of cell death by fungal elicitins. The Plant Journal, 23, 339–347.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, F., Menke, F. L. H., Yoshioka, K., Moder, W., Shirano, Y., & Klessig, D. F. (2004). High humidity suppresses ssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defense gene expression. The Plant Journal, 39, 920–932.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, G., Baumlein, H., Mock, H. P., Himmelbach, A., & Schweizer, P. (2006). The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiology, 142, 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Zwerger, K., & Hirt, H. (2001). Recent advances in plant MAP kinase signalling. Biological Chemistry, 382, 1123–1131.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandini P. Shetty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 KNPV

About this chapter

Cite this chapter

Shetty, N.P., Jørgensen, H.J.L., Jensen, J.D., Collinge, D.B., Shetty, H.S. (2008). Roles of reactive oxygen species in interactions between plants and pathogens. In: Collinge, D.B., Munk, L., Cooke, B.M. (eds) Sustainable disease management in a European context. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8780-6_6

Download citation

Publish with us

Policies and ethics