Skip to main content

Role of Falx on Brain Stress-Strain Responses

  • Chapter
Mechanosensitivity of the Nervous System

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 2))

Abstract

The objective of this chapter is to provide a review of the role of falx cerebri on brain mechanics, specifically stress and strain responses due to dynamic loading. Because stress-strain responses are inherently intrinsic, the review is focused on physical and computational models using the finite element method. In order to maintain the focus, although experimental animal models are used as validations tools for ensuring the confidence in the finite element or physical model output, discussions from biological tests are not a subject matter. While finite element modeling of the human head has been a subject matter f investigation for decades, a review of literature provides very few analyses regarding the role of falx on the internal stress-strain responses of the brain. As described, physical and finite element models have shown that the falx cerebri, present in the human head, affects the intrinsic response of the brain under contact- and inertia-induced dynamic loads. Physical models using a brain substitute have also shown a similar response. Regional stresses and strains from these models are discussed. The chapter concludes with some recommendations for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abel J, Gennarelli T, Segawa H (1978) Incidence and severity of cerebral concussion in the rhesus monkey following sagittal plane angular acceleration. In: Proceedings of the 22nd Stapp Car Crash Conference, 33–53.

    Google Scholar 

  • Adams JH, Doyle D, Graham DI, Lawrence AE, McLellan DR (1984) Diffuse axonal injury in head injuries caused by a fall. Lancet 2(8417–18), 1420–1422.

    Article  PubMed  CAS  Google Scholar 

  • Adams JH, Graham DI, Gennarelli TA (1983) Head injury in man and experimental animals: neuropathology. Acta Neurochir Suppl (Wien) 32, 15–30.

    CAS  Google Scholar 

  • Adams JH, Graham DI, Gennarelli TA, Maxwell WL (1991) Diffuse axonal injury in non-missile head injury. J Neurol Neurosurg Psychiatry 54(6), 481–483.

    PubMed  CAS  Google Scholar 

  • Adams JH, Graham DI, Murray LS, Scott G (1982) Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol 12(6), 557–563.

    Article  PubMed  CAS  Google Scholar 

  • Adams JH, Graham DI, Scott G, Parker LS, Doyle D (1980) Brain damage in fatal non-missile head injury. J Clin Pathol 33(12), 1132–1145.

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw DR, Ivarsson J, Morfey CL, Viano DC (2001) Simulation of acute subdural hematoma and diffuse axonal injury in coronal head impact. J Biomech 34(1), 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Davis R, Huffman R (1968) A sterotaxic atlas of the brain of the baoon. University of Texas Press, Austin, TX,

    Google Scholar 

  • Galford JE, McElhaney JH (1970) A viscoelastic study of scalp, brain, and dura. J Biomech 3(2), 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Gennarelli TA (1985) The state of the art of head injury biomechanics. In: Proceedings of the 30th American Association for the Advancement of Automotive Medicine, 447–463.

    Google Scholar 

  • Gennarelli TA, Meaney DF (1996) Mechanisms of primary head injury. In: R. Wilkins and S. Rengachary, eds. Neurosurgery. 2nd ed, McGraw Hill, New York, vol 2, 2611–2621.

    Google Scholar 

  • Gennarelli TA, Thibault LE (1982) Biomechanics of acute subdural hematoma. J Trauma 22(8), 680–686.

    PubMed  CAS  Google Scholar 

  • Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP (1982) Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12(6), 564–574.

    Article  PubMed  CAS  Google Scholar 

  • Gennarelli TA, Thibault LE, Tipperman R, Tomei G, Sergot R, Brown M, Maxwell WL, Graham DI, Adams JH, Irvine A, et al. (1989) Axonal injury in the optic nerve: a model simulating diffuse axonal injury in the brain. J Neurosurg 71(2), 244–253.

    PubMed  CAS  Google Scholar 

  • Gennarelli TA, Thibault LE, Tomel G, Wiser R, Graham D, Adams J (1987) Directional dependence of axonal brain injury due to centroidal and non-centroidal acceleration In: Proceedings of the Stapp Car Crash Conference, New Orleans, LA, 49–53.

    Google Scholar 

  • Graham DI, Adams JH, Doyle D, Ford I, Gennarelli TA, Lawrence AE, Maxwell WL, McLellan DR (1993) Quantification of primary and secondary lesions in severe head injury. Acta Neurochir Suppl (Wien) 57, 41–48.

    CAS  Google Scholar 

  • Higgens LS, Unterharnscheidt F (1969) Pathomorphology of experimental head injury due to rotational acceleration. Acta Neuropathol 12(2), 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson V, Thomas L, Khalil T (1983) The role of impact location in reversible cerebral concussion. In: Proceedings of the 27th Stapp Car Crash Conference, 225–240.

    Google Scholar 

  • Holbourn AH (1943) Mechanics of head injuries. Lancet 2, 438–441.

    Article  Google Scholar 

  • Imajo T, Challener RC, Roessmann U (1987) Diffuse axonal injury by assault. Am J Forensic Med Pathol 8(3), 217–219.

    PubMed  CAS  Google Scholar 

  • Imajo T, Kazee AM (1992) Diffuse axonal injury by simple fall. Am J Forensic Med Pathol 13(2), 169–172.

    PubMed  CAS  Google Scholar 

  • Li J, Zhang J, Yoganandan N, Pintar F, Gennarelli T (2007) Regional brain strains and role of falx in lateral impact-induced head rotational acceleration. Biomed Sci Instrum 43, 24–29.

    PubMed  CAS  Google Scholar 

  • Margulies S, Thibault L, Gennarelli T (1985) A study of scaling and head injury criteria using physical model experiments. In: Proceedings of the IRCOBI, 223–234.

    Google Scholar 

  • Margulies SS, Thibault LE (1992) A proposed tolerance criterion for diffuse axonal injury in man. J Biomech 25(8), 917–923.

    Article  PubMed  CAS  Google Scholar 

  • Margulies SS, Thibault LE, Gennarelli TA (1990) Physical model simulations of brain injury in the primate. J Biomech 23(8), 823–836.

    Article  PubMed  CAS  Google Scholar 

  • McElhaney JH, Fogle JL, Melvin JW, Haynes RR, Roberts VL, Alem NM (1970) Mechanical properties on cranial bone. J Biomech 3(5), 495–511.

    Article  PubMed  CAS  Google Scholar 

  • McLean AJ (1995) Brain injury without head impact? J Neurotrauma 12(4), 621–625.

    Article  PubMed  CAS  Google Scholar 

  • Meyers M, Chawla K (1984) Mechanical Metallurgy. Prentice-Hal Inc., NJ,

    Google Scholar 

  • Morris A, Hasan A, Mackay MM, Hill J (1993) Head injuries in lateral impact collisions. In: Proceedings of the IRCOBI, 41–55.

    Google Scholar 

  • Nahum A, Smith R, Ward C (1977) Intracranial pressures during head impact. In: Proceedings of the 21st Stapp Car Crash Conference.

    Google Scholar 

  • Nahum A, Ward C, Raasch E, Adams S, Schneider D (1980) Experimental studies of side impact to the human head. In: Proceedings of the 24th Stapp Car Crash Conference.

    Google Scholar 

  • Nieuwenhuys R, Voogd J, Huizjen C (1978) The human central nervous system. New York, (Springer, ed.)

    Google Scholar 

  • Nishimoto T, Murakami S (1998) Relation between diffuse axonal injury and internal head structures on blunt impact. J Biomech Eng 120(1), 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Ommaya AK, Gennarelli TA (1974) Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain 97(4), 633–654.

    Article  PubMed  CAS  Google Scholar 

  • Peerless SJ, Rewcastle NB (1967) Shear injuries of the brain. Can Med Assoc J 96(10), 577–582.

    PubMed  CAS  Google Scholar 

  • Pintar FA, Yoganandan N, Gennarelli TA (2000) Airbag effectiveness on brain trauma in frontal crashes. Annu Proc Assoc Adv Automot Med 44, 149–169.

    PubMed  CAS  Google Scholar 

  • Ruan J, Khalil T, King A (1993) Finite element modeling of direct head impact. In: Proceedings of the 37th Stapp Car Crash Conference.

    Google Scholar 

  • Sosin DM, Sniezek JE, Waxweiler RJ (1995) Trends in death associated with traumatic brain injury, 1979 through 1992. Success and failure. Jama 273(22), 1778–1780.

    Article  PubMed  CAS  Google Scholar 

  • Strich S (1956) Diffuse degeneration of the cerebral white matter in severe dementia following head injury. J Neurol Neurosurg Psychiat 19, 163–168.

    PubMed  CAS  Google Scholar 

  • Strich S (1961) Shearing of nerve fibers as a cause of brian damage due to head injury. Lancet 2, 443–448.

    Article  Google Scholar 

  • Takhounts EG, Eppinger RH, Campbell JQ, Tannous RE, Power ED, Shook LS (2003) On the Development of the SIMon Finite Element Head Model. Stapp Car Crash J 47, 107–133.

    PubMed  Google Scholar 

  • Thibault L, Gennarelli TA (1985) Biomechanics of craniocerberal trauma. In: D. Becker and J. Povlishock, eds. Central Nervous System Trauma NINCDS, Bethesda, MB, vol 1, 371–389.

    Google Scholar 

  • Thibault LE, Gennarelli TA (1985) Biomechanics of diffuse brain injuries. In: Proceedings of the 11th Experimental Safety Vehicels Conference, Oxford, England, 79–85.

    Google Scholar 

  • Unterharnscheidt F, Higgins LS (1969) Pathomorphology of experimental head injury due to rotational acceleration. Acta Neuropath 1969(12), 200–204.

    Article  Google Scholar 

  • Unterharnscheidt F, Higgins LS (1969) Traumatic lesions of brain and spinal cord due to nondeforming angular acceleration of the head. Tex Rep Biol Med 27(1), 127–166.

    PubMed  CAS  Google Scholar 

  • Zhang JP, Yoganandan NP, Pintar FAP, Gennarelli TAM (2006) Brain Strains in Vehicle Impact Tests. Annu Proc Assoc Adv Automot Med 50, 1–12.

    PubMed  Google Scholar 

  • Zhang L, Yang KH, Dwarampudi R, Omori K, Li T, Chang K, Hardy WN, Khalil TB, King AI (2001) Recent advances in brain injury research: a new human head model development and validation. Stapp Car Crash J 45, 369–394.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yoganandan, N., Li, J., Zhang, J., Pintar, F.A. (2009). Role of Falx on Brain Stress-Strain Responses. In: Kamkim, A., Kiseleva, I. (eds) Mechanosensitivity of the Nervous System. Mechanosensitivity in Cells and Tissues, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8716-5_13

Download citation

Publish with us

Policies and ethics