Skip to main content

Controlled Band Gap Modulation of Hydrogenated Dilute Nitrides by SEM-Cathodoluminescence

  • Conference paper
Microscopy of Semiconducting Materials 2007

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 120))

  • 1891 Accesses

Summary

Hydrogen is known to passivate nitrogen in dilute nitrides, such as Ga(AsN) and Ga(PN). By focusing an electron beam on the surface of hydrogenated GaAs1−xNx/GaAs (GaP1−yNy/GaP) we remove hydrogen atoms from their passivation sites, thus leading to a controlled decrease of the crystal band gap in the spatial region where the e-beam is steered. The area designated by the electron beam acts in all respects as a potential well for carriers. Cycling the samples several times between T=5 K and room temperature, the same CL images and spectra were recorded thus demonstrating the thermal stability of the H displacement process. The 100% pre hydrogenation conditions are achieved after 30–40 sec of irradiation at T=5 K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Capasso F 1987 Science 235, 172

    Article  PubMed  ADS  CAS  Google Scholar 

  2. Weisbuch C and Vinter B 1991 Quantum Semiconductor Structures (Academic Press, San Diego, USA)

    Google Scholar 

  3. Gréus Ch, Butov L, Daiminger F, Forchel A, Knipp P A and Reinecke T L 1993 Phys. Rev. B 47, 7626 (R)

    Article  ADS  Google Scholar 

  4. Bimberg D, Grundmann M and Ledentsov N N 1998 Quantum Dot Heterostructures (Wiley, Chichester, UK)

    Google Scholar 

  5. Polimeni A, Henini M, Patanè A, Eaves L, Main P C and Hill G 1998 Appl. Phys. Lett. 73, 1415

    Article  ADS  CAS  Google Scholar 

  6. Ciatto G, Boscherini F, Amore Bonapasta A, Filippone F, Polimeni A and Capizzi M 2005 Phys. Rev. B 71, 201301

    Article  ADS  CAS  Google Scholar 

  7. Physics and Applications of Dilute Nitrides, Eds I A Buyanova and W M Chen, 2004 (Taylor & Francis, New York, USA)

    Google Scholar 

  8. Steinle G, Mederer F, Kicherer M, Michalzik R, Kristen G, Egorov A Y, Riechert H, Wolf H D, and Ebeling K J 2001 Electron. Lett. 37, 632

    Article  CAS  Google Scholar 

  9. Kurtz S R, Allerman A A, Jones E D, Gee J M, Banas J J and Hammons B E 1999 Appl. Phys. Lett. 74, 729

    Article  ADS  CAS  Google Scholar 

  10. Welty R J, Xin H, Tu C W and Asbeck P M 2004 J. Appl. Phys. 95, 327

    Article  ADS  CAS  Google Scholar 

  11. Ignatov A, Patane' A, Makarovsky O and Eaves L 2006 Appl. Phys. Lett. 88, 032107

    Article  ADS  CAS  Google Scholar 

  12. Polimeni A, Baldassarri G H v. H, Bissiri M, Fischer M, Reinhardt M and Forchel A 2001 Phys. Rev. B 63, 201304 (R)

    Article  ADS  CAS  Google Scholar 

  13. Baldassarri G H v. H, Bissiri M, Polimeni A, Capizzi M, Fischer M, Reinhardt M and Forchel A 2001 Appl. Phys. Lett. 78, 3472

    Article  ADS  CAS  Google Scholar 

  14. Amore Bonapasta A, Filippone F, Giannozzi P, Capizzi M and Polimeni A 2002 Phys. Rev. Lett. 89, 216401

    Article  PubMed  ADS  CAS  Google Scholar 

  15. Polimeni A, Baldassarri G H v. H, Masia F, Frova A, Capizzi M, Sanna S, Fiorentini V, Klar P J and Stolz W 2004 Phys. Rev. B 69, 041201 (R)

    Article  ADS  CAS  Google Scholar 

  16. Polimeni A, Ciatto G, Ortega L, Jiang F, Boscherini F, Filippone F, Amore Bonapasta A, Stavola M and Capizzi M 2003 Phys. Rev. B 68, 085204 (R)

    Article  ADS  CAS  Google Scholar 

  17. Felici M, Polimeni A, Salviati G, Lazzarini L, Armani N, Masia F, Capizzi M, Martelli F, Lazzarino M, Bais G, Piccin M, Rubini S and Franciosi A 2006 Advanced Materials 18, 1993

    Article  CAS  Google Scholar 

  18. Pavesi M, Manfredi M, Salviati G, Armani N, Rossi F, Meneghesso G, Levada S, Zanoni E, Du S and Eliashevich I 2004 Appl. Phys. Lett. 84, 3403

    Article  ADS  CAS  Google Scholar 

  19. Silvestre S, Bernard-Loridant D, Constant E, Constant M and Chevallier J 2000 Appl. Phys. Lett., 77, 3206

    Article  ADS  CAS  Google Scholar 

  20. Myhailenko S, Ke W K and Hamilton B 1983 J. Appl. Phys. 54, 862

    Article  ADS  Google Scholar 

  21. Chao L-L, Cargill III G S, Levy M, Osgood Jr R M and McLane G F 1997 Appl. Phys. Lett. 70, 408

    Article  ADS  CAS  Google Scholar 

  22. Polimeni A, Bissiri M, Felici M, Capizzi M, Buyanova I A., Chen W M, Xin H P and Tu C W 2003 Phys. Rev. B 67, 201303 (R)

    Article  ADS  CAS  Google Scholar 

  23. Leibiger G, Gottschalch V, Rheinländer B, Šik J and Schubert M J 2001 Appl. Phys. 89, 4927

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this paper

Cite this paper

Salviati, G. et al. (2008). Controlled Band Gap Modulation of Hydrogenated Dilute Nitrides by SEM-Cathodoluminescence. In: Cullis, A.G., Midgley, P.A. (eds) Microscopy of Semiconducting Materials 2007. Springer Proceedings in Physics, vol 120. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8615-1_97

Download citation

Publish with us

Policies and ethics