Skip to main content

Modern Meteorology and Atmospheric Icing

  • Chapter
Atmospheric Icing of Power Networks

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Admirat P, Sakamoto Y (1988) Calibration of a wet snow model on real cases in Japan and France. In: Proc 4th International Workshop on Atmospheric Icing of Structures (IWAIS 1988), Paris, France, September

    Google Scholar 

  • Cigré (2001) Guidelines for field measurement of ice loadings on overhead power line conductors. Cigré Task Force 22.06.01, TB179

    Google Scholar 

  • Cigré (2006) Guidelines for meteorological icing models, statistical methods and topographical effects. Cigré Working Group B2.16, TB 291

    Google Scholar 

  • Czyzyk S, Runk K (2007) Operational Forecast Support by National Weather Service Forecast Office in Las Vegas during the Terrain-Induced Rotor Experiment. In: Proc 12th Annual Conf on Mountain Meteorology, American Meteorological Soc

    Google Scholar 

  • Doyle JD, Durran DR (2003) High-resolution simulations of wave-induced turbulence and rotors using NRL’s COAMPS. In: Proc 10th Annual Conf on Mountain Meteorology, American Meteorological Soc

    Google Scholar 

  • Ervik M, Fikke SM (1982) Development of a mathematical model to estimate ice loading on transmission lines by use of general climatological data. IEEE Transactions on Power Apparatus and Systems, PAS-101, No. 6 June 1982: 1497–1503

    Google Scholar 

  • Farzaneh M, Savadjiev K (2001) Icing Events Occurrence in Québec: Statistical analysis of field data. Int J of Offshore Polar Eng, 11, no 1 March: 9–15

    Google Scholar 

  • Fikke SM (2005a) COST Action 727: Measuring and forecasting atmospheric icing on structures. In: Proc 11th International Workshop on Atmospheric Icing of Structures (IWAIS 2005), Montreal, Canada, June 2005, Paper IW64

    Google Scholar 

  • Fikke SM (2005b) Modern meteorology and atmospheric icing. In: Proc 11th International Workshop on Atmospheric Icing of Structures (IWAIS 2005), Montreal, Canada, June 2005, Paper IW73

    Google Scholar 

  • Fikke SM, Johansen OS (1987) Earlier Norwegian iceload research. A review of investigations and results. In: Proc 2nd International Workshop on Atmospheric Icing of Structures (IWAIS 1984), Trondheim Norway, June 1984. EFI TR 3439, June: 11–18

    Google Scholar 

  • Fikke SM et al. (2007a) COST Action 727 Atmospheric icing on structures. Measurements and data collection on icing. State of the art. Veröffentlichung MeteoSchweiz Nr 75

    Google Scholar 

  • Fikke SM, Heimo A, Säntti K (2007b) COST 727 – Report from Phase 1. In: Proc 12th International Workshop on Atmospheric Icing of Structures (IWAIS 2007), Yokohama, Japan, October

    Google Scholar 

  • Goia ML (2000) Damages caused by icing and wind to the Romanian OEL. In: Proc 9th International Workshop on Atmospheric Icing of Structures (IWAIS 2000), Chester, June

    Google Scholar 

  • Golikova TN, Toporkava GD, Nikitina LG (1989) Ascertaining ice-load maps of the USSR territory. Trans Improving the reliability of high voltage lines. Moscow, Energoatomizdat, 1989: 107–122

    Google Scholar 

  • Hauge G, Holstad A, Lie I (2008) The use of ultra high resolution weather prediction models for real-time forecasting in complex terrain. Weather and Forecasting, in press.

    Google Scholar 

  • Holstad A, Lie I (2006) Simulation of wind conditions for the proposed new Hammerfest airport using a fine scale atmosphere model. Storm Technical Report 2006/7. Storm Weather Center, Bergen, Norway

    Google Scholar 

  • Holstad A Lie I, Utnes T, Ødegaard V (2001) Wind conditions in Sunndalsøra: A study using fine-scale models, Res. Rep. no 125, The Norwegian Meteorological Institute, July

    Google Scholar 

  • IEC (1997) Overhead lines – Meteorological data for assessing climatic loads. International Electrotechnical Commission Technical Report 61774, first edition: 1997–2008

    Google Scholar 

  • IEC (2003) Design criteria of overhead transmission lines. International Electrotechnical Commission (IEC) Technical Report 60826, Ed. 3.0

    Google Scholar 

  • ISO (2000) Atmospheric icing of structures. International Standardization Organisation (ISO) International Standard 12494

    Google Scholar 

  • Krómer I (1993) Hungarian icing activity survey. In: Proc 6th International Workshop on Atmospheric Icing of Structures (IWAIS 1993), Budapest, September 1993: ix–x

    Google Scholar 

  • Lehtonen P, Ahti K, Makkonen L (1986) The growth and disappearance of ice loads on a tall mast. In: Proc 3rd International Workshop on Atmospheric Icing of Structures (IWAIS 1996), Vancouver, Canada, May

    Google Scholar 

  • Lie I (2001) Wind conditions in Fjaerlandsfjorden, Res. Rep. no 129, The Norwegian Meteorological Institute, November

    Google Scholar 

  • Lozowski EP, Makkonen L (2005) Fifty years of progress in modelling the accumulation of atmospheric ice on power network equipment. In: Proc. Eleventh International Workshop on Atmospheric Icing on Structures, Montreal, CD-ROM

    Google Scholar 

  • Makkonen L (1992) Analysis of rotating multicylinder data in measuring cloud-droplet size and liquid water content. J Atmos Oceanic Technol, 9: 258–263

    Article  Google Scholar 

  • Moss SJ, Johnson DW (1994) Aircraft measurements to validate and improve numerical model parameterizations of ice to water ratios in cloud. Atmos Res, 34: 1–25

    Article  Google Scholar 

  • Olafsson H, Eliasson AJ, Thorsteins E (2002a) Orographic influence on wet snow icing. Part I: Upstream of mountains. In: Proc 10th International Workshop on Atmospheric Icing of Structures (IWAIS 2002), Brno, Czech Republic, June 2002, Paper 2–2

    Google Scholar 

  • Olafsson H, Eliasson AJ, Thorsteins E (2002b) Orographic influence on wet snow icing. Part II: Downstream of mountains. In: Proc 10th International Workshop on Atmospheric Icing of Structures (IWAIS 2002), Brno, Check Republic, June 2002, Paper 2–3

    Google Scholar 

  • Poots G (ed) (2000) Ice and snow accretions on structures. Philosophical Transactions, vol 358, no 1776, The Royal Society London, November

    Google Scholar 

  • Popolanský F (2000) Economical aspects of ice failures caused in power transmission on the territory of former Czechoslovakia. In: Proc 9th International Workshop on Atmospheric Icing of Structures (IWAIS 2000), Chester, June

    Google Scholar 

  • Rasch PJ, Kristjánsson JE (1998) A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J Climate, 11: 1587–1614

    Article  Google Scholar 

  • Reisner J, Rasmussen RM, Bruintjes RT (1998) Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Q J R Meteorol. Soc, 124: 1071–1107

    Article  Google Scholar 

  • Rutledge SA, Hobbs PV (1983) The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the ‘seeder-feeder’ process in warm-frontal rainbands. J Atmos Sci, 40: 1185–1206

    Article  Google Scholar 

  • Sakamoto Y (2000) Snow accretion on overhead wires. Roy Soc Phil Trans, 358, no 1776, November: 2941–2970

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Power JG (2005) A description of the Advanced Research WRF Version 2. NCAR Technical Note, NCAR/TN- 468+STR

    Google Scholar 

  • Smith RNB (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Q J R Meteorol Soc, vol 116: 435–460

    Article  Google Scholar 

  • Tallhaug L, Harstveit K, Fidje A (2005) Ice accumulation observed by use of web camera and modelled from meteorological parameters. IN: Proc Boreas VII, Wind energy production in cold climates, Saariselkä, Finland

    Google Scholar 

  • Thériault J, Stewart RE, Milbrandt JA, Yau MK (2006) On the simulation of winter precipitation types. J Geophysical Research, vol 111: D18202, doi:10.1029/2005JD006665

    Article  Google Scholar 

  • Thériault J, Stewart RE (2007) On the vertical effects of air velocity on winter precipitation types. Natural Hazards and Earth System Sceinces, vol 7: 231–242

    Google Scholar 

  • Thompson G, Rasmussen RM, Manning K (2004) Explicit forecasting of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon Wea Rev, vol 132: 519–542

    Article  Google Scholar 

  • Thorsteins E, Elíasson AJ (1998) Iceload measurements in test spans in Iceland – statistical analysis of data. In: Proc 8th International Workshop on Atmospheric Icing of Structures (IWAIS 1998), Reykjavik, June: 285–289

    Google Scholar 

  • Vassbø T, Kristjánsson JE, Fikke SM, Makkonen L (1998) An investigation of the feasibility of predicting icing episodes using numerical weather prediction model output. In: Proc 8th Int. Workshop on Atmospheric Icing on Structures (IWAIS 1998), Reykjavik, June: 343–347

    Google Scholar 

  • Wareing BJ, Chetwood P (2000) Ice load data from Deadwater Fell. In: Proc 9th International Workshop on Atmospheric Icing of Structures (IWAIS 2000), Chester, June

    Google Scholar 

  • Wilson DR, Ballard SP (1999) A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q J R Meteorol Soc, 125: 1607–1636

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fikke, S.M., Kristjánsson, J.E., Kringlebotn Nygaard, B.E. (2008). Modern Meteorology and Atmospheric Icing. In: Farzaneh, M. (eds) Atmospheric Icing of Power Networks. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8531-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8531-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8530-7

  • Online ISBN: 978-1-4020-8531-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics