Skip to main content

Abstract

Fast and reliable identification of bottled liquids is of great importance for security screening and, in principle, it can be done by electromagnetic measurements of dielectric permittivity functions of the liquids of concern in a frequency range, where bottles are transparent and liquids have specific dispersions. However, this frequency range is rather extended, from a few GHz to a few THz, and cannot be covered by any single conventional spectroscopy. A concept of liquid identifier, which is based on our new broadband Hilbert spectroscopy and high-T c Josephson detectors, is presented. The identifier with a Josephson detector in a Stirling cooler will operate at the frequency range from 5 to 1000 GHz with scanning time of around 10 ms and identification time less than 1 second. The first proof-of-principle measurements of reflection spectra from various bottled liquids in the range 40–400 GHz with total scanning time of 1 second have been carried out by Hilbert spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Existing and Potential Standoff Explosives Detection Techniques, National Academies Press, Washington, DC, 2004

    Google Scholar 

  2. L.D. Landau, E.M. Lifshitz. Electrodynamics of Continuos Media, Pergamon, Oxford, 1963

    Google Scholar 

  3. G.W. Chantry. Submillimetre Spectroscopy. Academic Press, London and New York, 1971

    Google Scholar 

  4. Y.Y. Divin, O.Y. Polyanski, A.Y. Shul‘man. Incoherent radiation spectroscopy by means of ac Josephson effect. Sov. Tech. Phys. Lett., vol. 6, pp. 454–458 (1980); US Patent N 4287418

    Google Scholar 

  5. Y.Y. Divin, O. Volkov, V. Pavlovskii, V. Shirotov, P. Shadrin, U. Poppe, K. Urban. Terahertz Hilbert spectroscopy by high-T c Josephson junctions. In: Advances in Solid State Physics, vol. 41, ed. B. Kramer (Springer, Berlin, 2001), pp. 301–313

    Google Scholar 

  6. J. Barthel, R. Buchner. High frequency permittivity and its use in the investigation of solution properties, Pure & Appl. Chem., vol. 63, pp. 1473–1482 (1991)

    Article  CAS  Google Scholar 

  7. A.K. Lyashchenko, V.S. Goncharov, P.S. Yastremenko. Structure and dielectric properties of aqueous solutions of hydrogen peroxide. J. Struct. Chem., vol. 17, pp. 871–876 (1976)

    Article  Google Scholar 

  8. A.A. Potapov, I.Yu. Parkhomenko. Dielectric properties and structure of aqueous hydro- gen peroxide solutions. Russ. J. Phys. Chem., vol. 72, pp. 1469–1474 (1998)

    Google Scholar 

  9. C. Ronne, L. Thrane, P.-O. Astrand, A. Wallqvist, K.V. Mikkelsen, S.R. Keiding. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamic simulation. J. Chem. Phys., vol. 107, pp. 5319–5331 (1997)

    Article  CAS  Google Scholar 

  10. P.M. Gross, R.C. Taylor. The dielectric constants of water, hydrogen peroxide and hydrogen-peroxide-water solutions. J. Am. Chem. Soc., vol. 72, pp. 2075–2080 (1950)

    Article  CAS  Google Scholar 

  11. L. Trane, R.H. Jacobsen, P.U. Jepsen, S.R. Keiding. THz reflection spectroscopy of liquid water. Chem. Phys. Lett., vol. 240, pp. 330–333 (1995)

    Article  Google Scholar 

  12. T. Ikeda et al. Investigation of inflammable liquids by terahertz spectroscopy. Appl. Phys. Lett., vol. 87, 034105 (2005)

    Article  Google Scholar 

  13. M. Naftaly, R.E. Miles. Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared. J. Non-Cryst. Sol., vol. 351, pp. 3341–3346 (2006)

    Article  Google Scholar 

  14. G. Sucha, M. Li, D. Harter, X.C. Zhang. Gas spectroscopy measurements using a compact terahertz system. Proceedings VSJ-SPIE98 (Dec. 6–9, 1998, Yokahama, Japan) pp. 1–3

    Google Scholar 

  15. U. Kaatze, Y. Feldman. Broadband dielectric spectrometry of liquids and biosystems. Meas. Sci. Technol., vol. 17, pp. R17–R35 (2006)

    Article  CAS  Google Scholar 

  16. D.S. Venables, C.A. Schmuttenmaer. Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile and methanol. J. Chem. Phys., vol. 113, pp. 11222–11236 (2000)

    Article  CAS  Google Scholar 

  17. K.K. Likharev, Dynamics of Josephson Junctions and Circuits. New York, Gordon & Breach, 1986

    Google Scholar 

  18. H. Hilgenkamp, J. Mannhart. Grain boundaries in high-T c superconductors. Rev. Mod. Phys., vol. 74, pp. 485–549 (2002)

    Article  CAS  Google Scholar 

  19. Y.Y. Divin, O.Y. Volkov, M.V. Liatti and V.N. Gubankov. Spectral range of the ac Josephson effect in [001]-tilt YBa 2Cu3O7-x bicrystal junctions. IEEE Trans. Appl. Supercond., vol. 13, no. 2, pp. 676–679 (2003)

    Article  CAS  Google Scholar 

  20. Y.Y. Divin, U. Poppe, C.L. Jia; P.M. Shadrin, K. Urban. Structural and electrical properties of YBa 2Cu3O7-x [100]-tilt grain boundary Josephson junctions with large I cRn -product on SrTiO 3 bicrystals. Physica C, vol. 372–376, pp. 115–118 (2002)

    Article  Google Scholar 

  21. Y.Y. Divin, D.A. Tkachev, V.V. Pavlovskii, O.Y. Volkov, M.V. Liatti, V.N. Gubankov, K. Urban. Classical and Josephson detection of terahertz radiation using YBa 2Cu3O7-x [100]-tilt bicrystal junctions. J. Phys.: Conf. Series, vol. 43, pp. 1322–1325 (2006)

    Article  Google Scholar 

  22. M.V. Lyatti, U. Poppe, and Y.Y. Divin. Electrical transport and noise properties of [100]-tilt YBa 2Cu3O7-x grain-boundary junctions with high I cRn product. IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 314–317 (2007)

    Article  CAS  Google Scholar 

  23. O.Y. Volkov, V.V. Pavlovskii, Y.Y. Divin, U. Poppe. Far-infrared Hilbert-transform spectrometer based on Stirling cooler. In: Applied Superconductivity 1999, ed. X. Obradors, F. Sandiumenge and J. Fontcuberta, Institute of Physics Conference Series No.167 (IOP Publishing, Bristol, vol. 2, 2000) pp. 623–626

    Google Scholar 

  24. Y.Y. Divin, O.Y. Volkov, M. Liatti, V.V. Shirotov, V.V. Pavlovskii; U. Poppe, P.M. Shadrin, K. Urban. Hilbert spectroscopy from gigahertz to terahertz frequencies by high-T c Josephson junctions. Physica C, vol. 372–376, pp. 416–419 (2002)

    Article  Google Scholar 

  25. Y.Y. Divin, U. Poppe, O.Y. Volkov, V.V. Pavlovskii. Frequency-selective incoherent detection of terahertz radiation by high-T c Josephson junctions. Appl. Phys. Lett., vol. 76, no. 20, pp. 2826–2828 (2000)

    Article  CAS  Google Scholar 

  26. V.V. Shirotov, Y.Y. Divin. Frequency-selective Josephson detector: Power dynamic range at subterahertz frequencies. Techn. Phys. Lett., vol. 30, pp. 552–524 (2004)

    Google Scholar 

  27. V. Shirotov, Y.Y. Divin, U. Poppe, H. Larue, E. Zimmermann, A. Ahmet, H. Halling, K. Urban. Application of Hilbert spectroscopy to pulsed far-infrared radiation. IEEE Trans. Appl. Supercond., vol. 13, no. 2, pp. 172–175 (2003)

    Article  CAS  Google Scholar 

  28. V.V. Shirotov, Y.Y. Divin, K. Urban. Far-infrared broadband measurements with Hilbert spectroscopy. Physica C, vol. 372–376 P1, pp. 454–456 (2002)

    Article  Google Scholar 

  29. V.V. Shirotov. Frequency-selective detector based on YBa2Cu3O7-x bicrystal Josephson junction for subterahertz Hilbert-transform spectroscopy. PhD Thesis, IRE (Russian Academy of Sciences, Moscow, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B. V

About this paper

Cite this paper

Divin, Y., Poppe, U., Urban, K. (2008). Hilbert Spectroscopy of Liquids for Security Screening. In: Schubert, H., Kuznetsov, A. (eds) Detection of Liquid Explosives and Flammable Agents in Connection with Terrorism. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8466-9_18

Download citation

Publish with us

Policies and ethics