Skip to main content

The Impact of ErbB2 on Cancer Progression and Metastasis through Modulation of Tumor and Tumor Microenvironment

  • Chapter
Regulation of Gene Expression in the Tumor Environment

Part of the book series: TTME ((TTME,volume 2))

  • 407 Accesses

Abstract

ErbB2 over-expression in cancer cells leads to a variety of biological consequences. These include cell cycle deregulation, increased invasion, altered adhesion, therapeutic resistance, extra-cellular remodeling, increased angiogenesis, abnormal stromal-epithelial interactions, disrupted integrin signaling and increased homing and metastasis. Here, we review the current and past literature to demonstrate how ErbB2 can impact cell-cell, cell-stromal and cell-matrix interactions, further promoting cancer progression. Through understanding the full interactive picture involved in ErbB2-mediated cancer progression, new-targeted therapies may bring promise to the clinic, benefiting patients who have ErbB2 over-expressing cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Muthuswamy, S.K., et al., ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol, 2001. 3(9): 785–92.

    Article  CAS  PubMed  Google Scholar 

  2. Yarden, Y., The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer, 2001. 37(Suppl 4): S3–8.

    Article  CAS  PubMed  Google Scholar 

  3. Negro, A., B.K. Brar, and K.F. Lee, Essential roles of Her2/erbB2 in cardiac development and function. Recent Prog Horm Res, 2004. 59: 1–12.

    Article  CAS  PubMed  Google Scholar 

  4. Di Fiore, P.P., et al., erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science, 1987. 237(4811): 178–82.

    Article  PubMed  Google Scholar 

  5. Olayioye, M.A., et al., ErbB-1 and ErbB-2 acquire distinct signaling properties dependent upon their dimerization partner. Mol Cell Biol, 1998. 18(9): 5042–51.

    CAS  PubMed  Google Scholar 

  6. Riese, D.J., II, et al., The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol Cell Biol, 1995. 15(10): 5770–76.

    CAS  PubMed  Google Scholar 

  7. Basu, T., P.H. Warne, and J. Downward, Role of Shc in the activation of Ras in response to epidermal growth factor and nerve growth factor. Oncogene, 1994. 9(12): 3483–91.

    CAS  PubMed  Google Scholar 

  8. Gale, N.W., et al., Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature, 1993. 363(6424): 88–92.

    Article  CAS  PubMed  Google Scholar 

  9. Li, N., et al., Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature, 1993. 363(6424): 85–88.

    Article  CAS  PubMed  Google Scholar 

  10. Wilkinson, M.G. and J.B. Millar, Control of the eukaryotic cell cycle by MAP kinase signaling pathways. Faseb J, 2000. 14(14): 2147–57.

    Article  CAS  PubMed  Google Scholar 

  11. Cobb, M.H. and E.J. Goldsmith, How MAP kinases are regulated. J Biol Chem, 1995. 270(25): 14843–46.

    Article  CAS  PubMed  Google Scholar 

  12. Fruman, D.A., R.E. Meyers, and L.C. Cantley, Phosphoinositide kinases. Annu Rev Biochem, 1998. 67: 481–507.

    Article  CAS  PubMed  Google Scholar 

  13. Kisseleva, T., et al., Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene, 2002. 285(1–2): 1–24.

    Article  CAS  PubMed  Google Scholar 

  14. Aaronson, D.S. and C.M. Horvath, A road map for those who don’t know JAK-STAT. Science, 2002. 296(5573): 1653–55.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, S.C., et al., Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell, 2004. 6(3): 251–61.

    Article  CAS  PubMed  Google Scholar 

  16. Slamon, D.J., et al., Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 1989. 244(4905): 707–12.

    Article  CAS  PubMed  Google Scholar 

  17. Lacroix, H., et al., Overexpression of erbB-2 or EGF receptor proteins present in early stage mammary carcinoma is detected simultaneously in matched primary tumors and regional metastases. Oncogene, 1989. 4(2): 145–51.

    CAS  PubMed  Google Scholar 

  18. Voravud, N., et al., Oncogene expression in cholangiocarcinoma and in normal hepatic development. Hum Pathol, 1989. 20(12): 1163–68.

    CAS  PubMed  Google Scholar 

  19. Nigawara, K., et al., [Expression of c-H-ras, c-erb B1 and c-erb B2 gene products in human bladder cancer]. Nippon Hinyokika Gakkai Zasshi, 1992. 83(8): 1212–19.

    CAS  PubMed  Google Scholar 

  20. Heinmoller, P., et al., HER2 status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of herceptin. Clin Cancer Res, 2003. 9(14): 5238–43.

    PubMed  Google Scholar 

  21. Falck, V.G. and W.J. Gullick, c-erbB-2 oncogene product staining in gastric adenocarcinoma: an immunohistochemical study. J Pathol, 1989. 159(2): 107–11.

    Article  CAS  PubMed  Google Scholar 

  22. Shin, I., T. Miller, and C.L. Arteaga, ErbB receptor signaling and therapeutic resistance to aromatase inhibitors. Clin Cancer Res, 2006. 12(3 Pt 2): 1008s–1012s.

    Article  CAS  PubMed  Google Scholar 

  23. Yu, D., et al., Overexpression of ErbB2 blocks Taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2 kinase. Mol Cell, 1998. 2(5): 581–91.

    Article  CAS  PubMed  Google Scholar 

  24. Yu, D., et al., Overexpression of both p185c-erbB2 and p170mdr-1 renders breast cancer cells highly resistant to taxol. Oncogene, 1998. 16(16): 2087–94.

    Article  CAS  PubMed  Google Scholar 

  25. Yu, D., et al., Overexpression of c-erbB-2/neu in breast cancer cells confers increased resistance to Taxol via mdr-1-independent mechanisms. Oncogene, 1996. 13(6): 1359–65.

    CAS  PubMed  Google Scholar 

  26. Piccart-Gebhart, M.J., et al., Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med, 2005. 353(16): 1659–72.

    Article  CAS  PubMed  Google Scholar 

  27. Robert, N., et al., Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J Clin Oncol, 2006. 24(18): 2786–92.

    Article  CAS  PubMed  Google Scholar 

  28. Romond, E.H., et al., Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med, 2005. 353(16): 1673–84.

    Article  CAS  PubMed  Google Scholar 

  29. Pavelic, Z.P., et al., c-myc, c-erbB-2, and Ki-67 expression in normal breast tissue and in invasive and noninvasive breast carcinoma. Cancer Res, 1992. 52(9): 2597–602.

    CAS  PubMed  Google Scholar 

  30. Guy, C.T., et al., Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA, 1992. 89(22): 10578–82.

    Article  CAS  PubMed  Google Scholar 

  31. Yu, D., et al., Mechanisms of c-erbB2/neu oncogene-induced metastasis and repression of metastatic properties by adenovirus 5 E1A gene products. Oncogene, 1992. 7(11): 2263–70.

    CAS  PubMed  Google Scholar 

  32. Lane, H.A., et al., ErbB2 potentiates breast tumor proliferation through modulation of p27(Kip1)-Cdk2 complex formation: receptor overexpression does not determine growth dependency. Mol Cell Biol, 2000. 20(9): 3210–23.

    Article  CAS  PubMed  Google Scholar 

  33. Basso, A.D., et al., Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene, 2002. 21(8): 1159–66.

    Article  CAS  PubMed  Google Scholar 

  34. Moasser, M.M., et al., The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res, 2001. 61(19): 7184–88.

    CAS  PubMed  Google Scholar 

  35. Motoyama, A.B., N.E. Hynes, and H.A. Lane, The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res, 2002. 62(11): 3151–58.

    CAS  PubMed  Google Scholar 

  36. Munster, P.N., et al., Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3’-kinase-AKT-dependent pathway. Cancer Res, 2002. 62(11): 3132–37.

    CAS  PubMed  Google Scholar 

  37. Neve, R.M., et al., Effects of oncogenic ErbB2 on G1 cell cycle regulators in breast tumour cells. Oncogene, 2000. 19(13): 1647–56.

    Article  CAS  PubMed  Google Scholar 

  38. Yakes, F.M., et al., Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res, 2002. 62(14): 4132–41.

    CAS  PubMed  Google Scholar 

  39. Lenferink, A.E., et al., ErbB2/neu kinase modulates cellular p27(Kip1) and cyclin D1 through multiple signaling pathways. Cancer Res, 2001. 61(17): 6583–91.

    CAS  PubMed  Google Scholar 

  40. Lee, R.J., et al., Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol, 2000. 20(2): 672–83.

    Article  CAS  PubMed  Google Scholar 

  41. Keyomarsi, K., et al., Cyclin E and survival in patients with breast cancer. N Engl J Med, 2002. 347(20): 1566–75.

    Article  CAS  PubMed  Google Scholar 

  42. White, S.L., et al., Cellular responses to ErbB-2 overexpression in human mammary luminal epithelial cells: comparison of mRNA and protein expression. Br J Cancer, 2004. 90(1): 173–81.

    Article  CAS  PubMed  Google Scholar 

  43. Moody, S.E., et al., Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell, 2002. 2(6): 451–61.

    Article  CAS  PubMed  Google Scholar 

  44. Muller, W.J., et al., Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell, 1988. 54(1): 105–15.

    Article  CAS  PubMed  Google Scholar 

  45. Ritch, P.A., S.L. Carroll, and H. Sontheimer, Neuregulin-1 enhances motility and migration of human astrocytic glioma cells. J Biol Chem, 2003. 278(23): 20971–78.

    Article  CAS  PubMed  Google Scholar 

  46. Wolf-Yadlin, A., et al., Effects of HER2 overexpression on cell signaling networks governing proliferation and migration. Mol Syst Biol, 2006. 2: 54.

    Article  PubMed  CAS  Google Scholar 

  47. Jothy, S., et al., Adhesion or anti-adhesion in cancer: what matters more? Cancer Metastasis Rev, 1995. 14(4): 363–76.

    Article  CAS  PubMed  Google Scholar 

  48. D’Souza, B. and J. Taylor-Papadimitriou, Overexpression of ERBB2 in human mammary epithelial cells signals inhibition of transcription of the E-cadherin gene. Proc Natl Acad Sci USA, 1994. 91(15): 7202–06.

    Article  CAS  PubMed  Google Scholar 

  49. Woodward, T.L., et al., Proliferation of mouse mammary epithelial cells in vitro: interactions among epidermal growth factor, insulin-like growth factor I, ovarian hormones, and extracellular matrix proteins. Endocrinology, 2000. 141(10): 3578–86.

    Article  CAS  PubMed  Google Scholar 

  50. Shirk, A.J. and R. Kuver, Epidermal growth factor mediates detachment from and invasion through collagen I and Matrigel in Capan-1 pancreatic cancer cells. BMC Gastroenterol, 2005. 5: 12.

    Article  PubMed  CAS  Google Scholar 

  51. Zhan, L., B. Xiang, and S.K. Muthuswamy, Controlled activation of ErbB1/ErbB2 heterodimers promote invasion of three-dimensional organized epithelia in an ErbB1-dependent manner: implications for progression of ErbB2-overexpressing tumors. Cancer Res, 2006. 66(10): 5201–08.

    Article  CAS  PubMed  Google Scholar 

  52. Gusterson, B.A., et al., Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group. J Clin Oncol, 1992. 10(7): 1049–56.

    CAS  PubMed  Google Scholar 

  53. Jarvinen, T.A., et al., Predictive value of topoisomerase IIalpha and other prognostic factors for epirubicin chemotherapy in advanced breast cancer. Br J Cancer, 1998. 77(12): 2267–73.

    CAS  PubMed  Google Scholar 

  54. Albanell, J., F. Rojo, and J. Baselga, Pharmacodynamic studies with the epidermal growth factor receptor tyrosine kinase inhibitor ZD1839. Semin Oncol, 2001. 28(5 Suppl 16): 56–66.

    Article  CAS  PubMed  Google Scholar 

  55. Pegram, M.D., et al., Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol, 1998. 16(8): 2659–71.

    CAS  PubMed  Google Scholar 

  56. Saal, L.H., et al., PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res, 2005. 65(7): 2554–59.

    Article  CAS  PubMed  Google Scholar 

  57. Konecny, G., et al., Quantitative association between HER-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer. J Natl Cancer Inst, 2003. 95(2): 142–53.

    Article  CAS  PubMed  Google Scholar 

  58. Stal, O., et al., ErbB2 status and the benefit from two or five years of adjuvant tamoxifen in postmenopausal early stage breast cancer. Ann Oncol, 2000. 11(12): 1545–50.

    Article  CAS  PubMed  Google Scholar 

  59. Grunt, T.W., et al., Bidirectional interactions between the estrogen receptor and the cerbB-2 signaling pathways: heregulin inhibits estrogenic effects in breast cancer cells. Int J Cancer, 1995. 63(4): 560–67.

    Article  CAS  PubMed  Google Scholar 

  60. Yang, Z., C.J. Barnes, and R. Kumar, Human epidermal growth factor receptor 2 status modulates subcellular localization of and interaction with estrogen receptor alpha in breast cancer cells. Clin Cancer Res, 2004. 10(11): 3621–28.

    Article  CAS  PubMed  Google Scholar 

  61. Benz, C.C., et al., Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat, 1992. 24(2): 85–95.

    Article  CAS  PubMed  Google Scholar 

  62. Burke, H.B., et al., Predicting response to adjuvant and radiation therapy in patients with early stage breast carcinoma. Cancer, 1998. 82(5): 874–77.

    Article  CAS  PubMed  Google Scholar 

  63. Pirollo, K.F., et al., p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene, 1997. 14(14): 1735–46.

    Article  CAS  PubMed  Google Scholar 

  64. Shao, R., et al., Inhibition of nuclear factor-kappaB activity is involved in E1A-mediated sensitization of radiation-induced apoptosis. J Biol Chem, 1997. 272(52): 32739–42.

    Article  CAS  PubMed  Google Scholar 

  65. Zhou, B.P., et al., HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway. J Biol Chem, 2000. 275(11): 8027–31.

    Article  CAS  PubMed  Google Scholar 

  66. Gearing, A.J., et al., Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature, 1994. 370(6490): 555–57.

    Article  CAS  PubMed  Google Scholar 

  67. Kajita, M., et al., Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol, 2001. 153(5): 893–904.

    Article  CAS  PubMed  Google Scholar 

  68. Tan, M., J. Yao, and D. Yu, Overexpression of the c-erbB-2 gene enhanced intrinsic metastasis potential in human breast cancer cells without increasing their transformation abilities. Cancer Res, 1997. 57(6): 1199–205.

    CAS  PubMed  Google Scholar 

  69. Mazumdar, A., et al., Heregulin regulation of urokinase plasminogen activator and its receptor: human breast epithelial cell invasion. Cancer Res, 2001. 61(1): 400–05.

    CAS  PubMed  Google Scholar 

  70. Ryan, B.M., et al., Survivin expression in breast cancer predicts clinical outcome and is associated with HER2, VEGF, urokinase plasminogen activator and PAI-1. Ann Oncol, 2006. 17(4): 597–604.

    Article  CAS  PubMed  Google Scholar 

  71. Heimann, R., et al., Assessment of intratumoral vascularization (angiogenesis) in breast cancer prognosis. Breast Cancer Res Treat, 1998. 52(1–3): 147–58.

    Article  CAS  PubMed  Google Scholar 

  72. Blackwell, K.L., et al., HER-2 gene amplification correlates with higher levels of angiogenesis and lower levels of hypoxia in primary breast tumors. Clin Cancer Res, 2004. 10(12 Pt 1): 4083–88.

    Article  CAS  PubMed  Google Scholar 

  73. Yen, L., et al., Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis. Oncogene, 2000. 19(31): 3460–69.

    Article  CAS  PubMed  Google Scholar 

  74. Yang, W., et al., ErbB2 overexpression correlates with increased expression of vascular endothelial growth factors A, C, and D in human breast carcinoma. Cancer, 2002. 94(11): 2855–61.

    Article  CAS  PubMed  Google Scholar 

  75. Finkenzeller, G., et al., Activated Neu/ErbB-2 induces expression of the vascular endothelial growth factor gene by functional activation of the transcription factor Sp 1. Angiogenesis, 2004. 7(1): 59–68.

    Article  CAS  PubMed  Google Scholar 

  76. Klos, K.S., et al., ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneous metastasis of human breast cancer cells. Cancer Res, 2006. 66(4): 2028–37.

    Article  CAS  PubMed  Google Scholar 

  77. Yang, W., et al., ErbB2 overexpression in human breast carcinoma is correlated with p21Cip1 up-regulation and tyrosine-15 hyperphosphorylation of p34Cdc2: poor responsiveness to chemotherapy with cyclophoshamide methotrexate, and 5-fluorouracil is associated with Erb2 overexpression and with p21Cip1 overexpression. Cancer, 2003. 98(6): 1123–30.

    Article  CAS  PubMed  Google Scholar 

  78. Traxler, P., et al., AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res, 2004. 64(14): 4931–41.

    Article  CAS  PubMed  Google Scholar 

  79. Mackay, A., et al., cDNA microarray analysis of genes associated with ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial cells. Oncogene, 2003. 22(17): 2680–88.

    Article  CAS  PubMed  Google Scholar 

  80. Bon, G., et al., Loss of beta4 integrin subunit reduces the tumorigenicity of MCF7 mammary cells and causes apoptosis upon hormone deprivation. Clin Cancer Res, 2006. 12(11 Pt 1): 3280–87.

    Article  CAS  PubMed  Google Scholar 

  81. Yoon, S.O., S. Shin, and E.A. Lipscomb, A novel mechanism for integrin-mediated ras activation in breast carcinoma cells: the alpha6beta4 integrin regulates ErbB2 translation and transactivates epidermal growth factor receptor/ErbB2 signaling. Cancer Res, 2006. 66(5): 2732–39.

    Article  CAS  PubMed  Google Scholar 

  82. Hannigan, G.E., et al., Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature, 1996. 379(6560): 91–96.

    Article  CAS  PubMed  Google Scholar 

  83. Wu, C., et al., Integrin-linked protein kinase regulates fibronectin matrix assembly, E-cadherin expression, and tumorigenicity. J Biol Chem, 1998. 273(1): 528–36.

    Article  CAS  PubMed  Google Scholar 

  84. Xie, W., et al., Expression of the integrin-linked kinase (ILK) in mouse skin: loss of expression in suprabasal layers of the epidermis and up-regulation by erbB-2. Am J Pathol, 1998. 153(2): 367–72.

    CAS  PubMed  Google Scholar 

  85. Khoury, H., et al., HGF converts ErbB2/Neu epithelial morphogenesis to cell invasion. Mol Biol Cell, 2005. 16(2): 550–61.

    Article  CAS  PubMed  Google Scholar 

  86. Price-Schiavi, S.A., et al., Expression, location, and interactions of ErbB2 and its intramembrane ligand Muc4 (sialomucin complex) in rat mammary gland during pregnancy. J Cell Physiol, 2005. 203(1): 44–53.

    Article  CAS  PubMed  Google Scholar 

  87. Pino, V., et al., Membrane mucin Muc4 induces density-dependent changes in ERK activation in mammary epithelial and tumor cells: role in reversal of contact inhibition. J Biol Chem, 2006. 281(39): 29411–20.

    Article  CAS  PubMed  Google Scholar 

  88. Chiodoni, C., et al., Triggering CD40 on endothelial cells contributes to tumor growth. J Exp Med, 2006. 203(11): 2441–50.

    Article  CAS  PubMed  Google Scholar 

  89. Muller, A., et al., Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001. 410(6824): 50–56.

    Article  CAS  PubMed  Google Scholar 

  90. Nagasawa, T., et al., Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc Natl Acad Sci USA, 1996. 93(25): 14726–29.

    Article  CAS  PubMed  Google Scholar 

  91. Braun, S., et al., ErbB2 overexpression on occult metastatic cells in bone marrow predicts poor clinical outcome of stage I-III breast cancer patients. Cancer Res, 2001. 61(5): 1890–95.

    CAS  PubMed  Google Scholar 

  92. Li, Y.M., et al., Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell, 2004. 6(5): 459–69.

    Article  CAS  PubMed  Google Scholar 

  93. Cabioglu, N., et al., Chemokine receptor CXCR4 expression in breast cancer as a potential predictive marker of isolated tumor cells in bone marrow. Clin Exp Metastasis, 2005. 22(1): 39–46.

    Article  CAS  PubMed  Google Scholar 

  94. Corsini, C., et al., Stroma cells: a novel target of herceptin activity. Clin Cancer Res, 2003. 9(5): 1820–25.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hawthorne, V.S., Yu, D. (2008). The Impact of ErbB2 on Cancer Progression and Metastasis through Modulation of Tumor and Tumor Microenvironment. In: Bar-Eli, M. (eds) Regulation of Gene Expression in the Tumor Environment. TTME, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8341-9_4

Download citation

Publish with us

Policies and ethics