Skip to main content

Crystallization Methods of Membrane Proteins: Practical Aspects of Crystallizing Plant Light-Harvesting Complexes

  • Chapter
Biophysical Techniques in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 26))

The light reactions in photosynthesis involve a series of membrane protein complexes residing in photosynthetic membranes. The three-dimensional structures of these complexes are indispensable for a better understanding of the underlying molecular mechanism of light reactions. The key step in the structure determination of these complexes by X-ray crystallography is crystallization. Here we review the major aspects concerning membrane protein crystallization. Membrane protein crystals can be classifi ed into three basic types according to their different packing patterns. Membrane proteins are purifi ed and crystallized in detergent solutions. The basic properties of detergents and some considerations about detergents are discussed. A homogeneous membrane protein sample with detergent concentration properly controlled is a good start for crystallization. It is not diffi cult to fi nd initial crystallization conditions for membrane proteins, but further optimization for high-quality crystals suitable for structure determination is a challenging task. The optimization strategies include additive screen, detergent exchange and protein modifi cation, in addition to adjustments on regular factors like temperature, pH and precipitants. In the second part of this chapter, we present a practical case of photosynthetic membrane protein crystallization and optimization. The plant major light-harvesting complex of Photosystem II was crystallized in four different forms. One of them was highly ordered in all three dimensions and could diffract X-rays to 2.5 Å resolution. It was obtained after careful optimization of detergent, lipid and additives. This crystal form belongs to a novel type of membrane protein crystal, type III, which is built from icosahedral proteoliposome vesicles. The formation of rigid and homogenous proteoliposomes is a prerequisite for the growth of well-ordered type III crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JP (1994) Crystallization of the reaction center from Rhodobacter sphaeroides in a new tetragonal form. Proteins 20: 283-286

    Article  CAS  PubMed  Google Scholar 

  • Byrne B, Abramson J, Jansson M, Holmgren E and Iwata S (2000) Fusion protein approach to improve the crystal quality of cytochrome bo 3 ubiquinol oxidase from Escherichia coli. Biochim Biophys Acta 1459: 449-455

    Article  CAS  PubMed  Google Scholar 

  • Chang G and Roth CB (2001) Structure of MsbA from E. coli: A homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293: 1793-1800

    Article  CAS  PubMed  Google Scholar 

  • Chang G, Spencer RH, Lee AT, Barclay MT and Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 282: 2220-2226

    Article  CAS  PubMed  Google Scholar 

  • Cusack S, Belrhali H, Bram A, Burghammer M, Perrakis A and Riekel C (1998) Small is beautiful: Protein micro-crystallography. Nat Struct Biol 5: 634-637

    Article  CAS  PubMed  Google Scholar 

  • Dahout-Gonzalez C, Brandolin G and Pebay-Peyroula E (2003) Crystallization of the bovine ADP/ATP carrier is critically dependent upon the detergent-to-protein ratio. Acta Crystal-logr D 59: 2353-2355

    Article  Google Scholar 

  • Deisenhofer J and Michel H (1989) Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. EMBO J 8: 2149-2170

    CAS  PubMed  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318: 618-624

    Article  Google Scholar 

  • Derewenda ZS (2004) Rational protein crystallization by mutational surface engineering. Structure 12: 529-535

    Article  CAS  PubMed  Google Scholar 

  • Dormann P, Balbo I and Benning C (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284: 2181-2184

    Article  CAS  PubMed  Google Scholar 

  • Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT and MacKinnon R (1998) The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280: 69-77

    Article  CAS  PubMed  Google Scholar 

  • Elrad D, Niyogi KK and Grossman AR (2002) A major lightharvesting polypeptide of Photosystem II functions in thermal dissipation. Plant Cell 14: 1801-1816

    Article  CAS  PubMed  Google Scholar 

  • Fromme P and Witt HT (1998) Improved isolation and crystallization of Photosystem I for structural analysis. Biochim Biophys Acta 1365: 175-184

    Article  CAS  Google Scholar 

  • Furuichi M, Nishimoto E, Koga T, Takase A and Yamashita S (1997) Detergent effects on the light-harvesting chlorophyll a/b-protein complex crystallization revealed by fluorescence depolarization. Biochim Biophys Res Comm 233: 555-558

    Article  CAS  Google Scholar 

  • Garavito RM and Rosenbusch JP (1980) Three-dimensional crystals of an integral membrane protein: An initial X-ray analysis. J Cell Biol 86: 327-329

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV and Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Phys 47: 655-684

    Article  CAS  Google Scholar 

  • Huang LS, Cobessi D and Berry EA (2003) Crystallization of cytochrome bc 1 complex. In: S Iwata (ed) Methods and Results in Crystallization of Membrane Proteins, pp 203-226. International University Line, La Jolla

    Google Scholar 

  • Hunte C, Koepke J, Lange C, Rossmanith T and Michel H (2000) Structure at 2.3 Å resolution of the cytochrome bc 1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Struct Fold Des 8: 669-684

    Article  CAS  Google Scholar 

  • Iwata S (2003) Crystallization informatics of membrane proteins. In: S Iwata (ed) Methods and Results in Crystallization of Membrane Proteins, pp 280-297. International University Line, La Jolla

    Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B and Michel H (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376: 660-669

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT and MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423: 33-41

    Article  CAS  PubMed  Google Scholar 

  • Jidenko M, Nielsen RC, Sørensen TL, Møller JV, le Maire M, Nissen P and Jaxel C (2005) Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102: 11687-11691

    Article  CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411: 909-917

    Article  CAS  PubMed  Google Scholar 

  • Jormakka M, Tornroth S, Abramson J, Byrne B and Iwata S (2002) Purification and crystallization of the respiratory complex formate dehydrogenase-N from Escherichia coli. Acta Crystal-logr D 58: 160-162

    Article  Google Scholar 

  • Katona G, Andreasson U, Landau EM, Andreasson LE and Neutze R (2003) Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35 Å resolution. J Mol Biol 331: 681-692

    Article  CAS  PubMed  Google Scholar 

  • Kolbe M, Besir H, Essen LO and Oesterhelt D (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288: 1390-1396

    Article  CAS  PubMed  Google Scholar 

  • Kouyama T, Yamamoto M, Kamiya N, Iwasaki H, Ueki T and Sakurai I (1994) Polyhedral assembly of a membrane protein in its three-dimensional crystal. J Mol Biol 236: 990-994

    Article  CAS  PubMed  Google Scholar 

  • Kühlbrandt W (1987) Three-dimensional crystals of the light-harvesting chlorophyll a/b protein complex from pea chloroplasts. J Mol Biol 194: 757-762

    Article  PubMed  Google Scholar 

  • Kühlbrandt W (1988) Three-dimensional crystallization of membrane proteins. Quart Rev Biophys 21: 429-77

    Article  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367: 614-621

    Article  PubMed  Google Scholar 

  • Lancaster CRD, Kröger A, Auer M and Michel H (1999) Structure of fumarate reductase from Wolinella succinogenes at 2.2 Å resolution. Nature 402: 377-385

    Article  CAS  PubMed  Google Scholar 

  • Landau EM and Rosenbusch JP (1996) Lipidic cubic phases: A novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci USA 93: 14532-14535

    Article  CAS  PubMed  Google Scholar 

  • Lange C and Hunte C (2002) Crystal structure of the yeast cytochrome bc 1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci USA 99: 2800-2805

    Article  CAS  PubMed  Google Scholar 

  • Lemieux MJ, Song J, Kim MJ, Huang Y, Villa A, Auer M, Li XD and Wang DN (2003) Three-dimensional crystallization of the Escherichia coli glycerol-3-phosphate transporter: A member of the major facilitator superfamily. Protein Sci 12: 2748-2756

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Mao G and Ng KY (2004) Mechanical properties and stability measurement of cholesterol-containing liposome on mica by atomic force microscopy. J Colloid Interf Sci 278: 53-62

    Article  CAS  Google Scholar 

  • Liu DZ, Chen WY, Tasi LM and Yang SP (2000) Microcalorimetric and shear studies on the effects of cholesterol on the physical stability of lipid vesicles. Colloid Surface A 172: 57-67

    Article  CAS  Google Scholar 

  • Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM and Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428: 287-292

    Article  CAS  PubMed  Google Scholar 

  • Long SB, Campbell EB and Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309: 897-903

    Article  CAS  PubMed  Google Scholar 

  • Lou SQ, Wang KB, Zhao FH, Xu CH and Kuang TY (1995) A comparative study on PS II light harvesting chlorophyll a/b protein complexes between spinach and cucumber. Acta Bot Sin 37: 192-197

    CAS  Google Scholar 

  • Luecke H, Schobert B, Richter HT, Cartailler JP and Lanyi JK (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J Mol Biol 291: 899-911

    Article  CAS  PubMed  Google Scholar 

  • Luecke H, Schobert B, Lanyi JK, Spudich EN and Spudich JL (2001) Crystal structure of sensory rhodopsin II at 2.4 Å: Insights into color tuning and transducer interaction. Science 293: 1499-1503

    Article  CAS  PubMed  Google Scholar 

  • Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33: 491-497

    Article  CAS  PubMed  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517-521

    Article  CAS  Google Scholar 

  • Michel H (1983) Crystallization of membrane proteins. Trends Biochem Sci 8: 56-59

    Article  CAS  Google Scholar 

  • Michel H (2006) Membrane proteins of known structure. http:// www.mpibp-frankfurt.mpg.de/michel/public/memprotstruct. html (March 30, 2006)

  • Michel H and Oesterhelt D (1980) Three-dimensional crystals of membrane proteins: Bacteriorhodopsin. Proc Natl Acad Sci USA 77: 1283-1285

    Article  CAS  PubMed  Google Scholar 

  • Nußberger S, Dorr K, Wang DN and Kühlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234: 347-356

    Article  PubMed  Google Scholar 

  • Ostermeier C, Iwata S, Ludwig B and Michel H (1995) Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nat Struct Biol 2: 842-846

    Article  CAS  PubMed  Google Scholar 

  • Ostermeier C, Harrenga A, Ermler U and Michel H (1997) Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody Fv fragment. Proc Natl Acad Sci USA 94: 10547-10553

    Article  CAS  PubMed  Google Scholar 

  • Pautsch A, Vogt J, Model K, Siebold C and Schulz GE (1999) Strategy for membrane protein crystallization exemplified with OmpA and OmpX. Proteins 34: 167-172

    Article  CAS  PubMed  Google Scholar 

  • Peter GF and Thornber JP (1991) Biochemical composition and organization of higher plant Photosystem II light-harvesting pigment-proteins. J Biol Chem 266: 16745-16754

    CAS  PubMed  Google Scholar 

  • Riekel C, Burghammer M and Schertler G (2005) Protein crystallography microdiffraction. Curr Opin Struc Biol 15: 556-562

    Article  CAS  Google Scholar 

  • Royant A, Nollert P, Edman K, Neutze R, Landau EM, Pebay-Peyroula E and Navarro J (2001) X-ray structure of sensory rhodopsin II at 2.1 Å resolution. Proc Natl Acad Sci USA 98: 10131-10136

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Lee PJ, Wentworth M, Young AJ and Horton P (1999) Determination of the stoichiometry and strength of binding of xanthophylls to the Photosystem II light harvesting complexes. J Biol Chem 274: 10458-10465

    Article  CAS  PubMed  Google Scholar 

  • Schertler GF, Bartunik HD, Michel H and Oesterhelt D (1993) Orthorhombic crystal form of bacteriorhodopsin nucleated on benzamidine diffracting to 3.6 Å resolution. J Mol Biol 234: 156-164

    Article  CAS  PubMed  Google Scholar 

  • Smyth DR, Mrozkiewicz MK, McGrath WJ, Listwan P and Kobe B (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Sci 12: 1313-1322

    Article  CAS  PubMed  Google Scholar 

  • Soulimane T, Gohlke U, Huber R and Buse G (1995) Threedimensional crystals of cytochrome-c oxidase from Thermus thermophilus diffracting to 3.8 Å resolution. FEBS Lett 368: 132-134

    Article  CAS  PubMed  Google Scholar 

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M and Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24: 919-928

    Article  CAS  PubMed  Google Scholar 

  • Strop P and Brunger AT (2005) Refractive index-based determination of detergent concentration and its application to the study of membrane proteins. Protein Sci 14: 2207-2211

    Article  CAS  PubMed  Google Scholar 

  • Timmins PA, Hauk J, Wacker T and Welte W (1991) The influence of heptane-1,2,3-triol on the size and shape of LDAO micelles. Implications for the crystallisation of membrane proteins. FEBS Lett 280: 115-120

    Article  CAS  PubMed  Google Scholar 

  • Tong L and Rossmann MG (1990) The locked rotation function. Acta Crystallogr A 46: 783-792

    Article  PubMed  Google Scholar 

  • Toyoshima C, Nakasako M, Nomura H and Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405: 647-655

    Article  CAS  PubMed  Google Scholar 

  • White SH (2004) The progress of membrane protein structure determination. Protein Sci 13: 1948-1949

    Article  CAS  PubMed  Google Scholar 

  • White SH (2006) Membrane Proteins of Known 3D structure. http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html (June 8, 2006)

  • Xu CH, Zhao FH, Wang KB, Yang DH and Dai YL (1994) Isolation and spectroscopic analysis on the major light-harvesting chlorophyll a/b binding protein of Photosystem II. Bot Res 7: 202-207

    Google Scholar 

  • Zhang H, Kurisu G, Smith JL and Cramer WA (2003) A defined protein-detergent-lipid complex for crystallization of integral membrane proteins: The cytochrome b 6 f complex of oxygenic photosynthesis. Proc Natl Acad Sci USA 100: 5160-5163

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Morais-Cabral JH, Kaufman A and MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414: 43-48

    Article  CAS  PubMed  Google Scholar 

  • Zulauf M (1991) Detergent phenomena in membrane protein crystallization. In: H Michel (ed) Crystallization of Membrane Proteins, pp 53-72. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Liu, Z., Chang, W. (2008). Crystallization Methods of Membrane Proteins: Practical Aspects of Crystallizing Plant Light-Harvesting Complexes. In: Aartsma, T.J., Matysik, J. (eds) Biophysical Techniques in Photosynthesis. Advances in Photosynthesis and Respiration, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8250-4_5

Download citation

Publish with us

Policies and ethics