Skip to main content

Part of the book series: World Class Parasites ((WCPA,volume 9))

Abstract

The apicoplast represents a potential drug target to combat Toxoplasma gondii infection, as it is essential to the parasite and absent from host cells. Functions of the apicoplast include fatty acids synthesis, protein synthesis, DNA replication, electron transport, and heme biosynthesis. Each pathway and its potential for new chemotherapeutic leads will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alban, C., P. Baldet, and R. Douce. 1994. Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Plant Molecular Biology 24: 35–49.

    Article  Google Scholar 

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson. 1994. Molecular Biology of the Cell, 3rd edn. Garland Publishing.

    Google Scholar 

  • Black, M.W., and J.C. Boothroyd. 2000. Lytic cycle of Toxoplasma gondii. Microbiology and Molecular Biology Reviews 64: 607–623.

    Article  PubMed  CAS  Google Scholar 

  • Camps, M., G. Arrizabalaga, and J. Boothroyd. 2002. An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii. Molecular Microbiology 43: 1309–1318.

    Article  PubMed  CAS  Google Scholar 

  • Clough, B., M. Strath, P. Preiser, P. Denny, and I.R. Wilson. 1997. Thiostrepton binds to malarial plastid rRNA. FEBS Letters 406: 123–125.

    Article  PubMed  CAS  Google Scholar 

  • Derouin, F., and C. Chastang. 1989. In vitro effects of folate inhibitors on Toxoplasma gondii. Antimicrobial Agents and Chemotherapy 33: 1753–1759.

    PubMed  CAS  Google Scholar 

  • Douthwaite, S. 1992. Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomeal RNA. Nucleic Acids Research 20: 4717–4720.

    Article  PubMed  CAS  Google Scholar 

  • Dubey, J.P., D.S. Lindsay, and C.A. Speer. 1998. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical Microbiology Reviews 11: 267–299.

    PubMed  CAS  Google Scholar 

  • Egea, N., and N. Lang-Unnasch. 1995. Phylogeny of the large extrachromosomal DNA of organisms in the phylum apicomplexa. Journal of Eukaryotic Microbiology 42: 679–684.

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich, W., M. Schwarz, A. Cartayrade, D. Arigoni, M.H. Zenk, and A. Bacher. 1998. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chemistry and Biology 5: 221–233.

    Article  Google Scholar 

  • Fast, N.M., J.C. Kissinger, D.S. Roos, and P.J. Keeling. 2001. Nuclear-encoded, plastidtargeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Molecular Biology and Evolution 18: 418–426.

    PubMed  CAS  Google Scholar 

  • Fichera, M.E., M.K. Bhopale, and D.S. Roos. 1995. In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasm gondii. Antimicrobial Agents and Chemotherapy 39: 1530–1537.

    PubMed  CAS  Google Scholar 

  • —, and D.S. Roos. 1997. A plastid organelle as a drug target in apicomplexan parasites. Nature 390: 407–409.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, M., J. Feagin, and D. Moore. 1991. Organization and expression of small subunit ribosomal RNA genes encoded by a 35 kbase circular DNA in Plasmodium falciparum. Molecular and Biochemical Parasitology 48: 77–88.

    Article  PubMed  CAS  Google Scholar 

  • Gozalbes, R., M. Brun-Pascaud, R. Garcia-Domenech, J. Galvez, P.M. Girard, J.P. Doucet, and F. Derouin. 2000. Anti-Toxoplasma activities of 24 quinolones and fluoroquinolones in vitro: prediction of activity by molecular topology and virtual computational techniques. Antimicrobial Agents and Chemotherapy 44: 2771–2776.

    Article  PubMed  CAS  Google Scholar 

  • Harwood, J.L. 1996. Recent advances in the biosynthesis of plant fatty acids. Biochimica Biophysica Acta 1301: 7–56.

    Google Scholar 

  • Hayashi, T., O. Yamamoto, H. Sasaki, A. Kawaguchi, and H. Okazaki. 1983. Mechanism of action of the antibiotic thiolactomycin inhibition of fatty acid synthesis of Escherichia coli. Biochemica Biophysica Research Communication 115: 1108–1113.

    Article  CAS  Google Scholar 

  • He, C.Y., M.K. Shaw, C.H. Pletcher, B. Streipen, L.G. Tilney, and D.S. Roos. 2001. A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO Journal 20: 330–339.

    Article  PubMed  CAS  Google Scholar 

  • Heath, R.J., Y.T. Yu, M.A. Shapiro, E. Olson, and C.O. Rock. 1998. Broadspectrum antimicrobial biocides target the Fab I component of fatty acid synthesis. Journal of Biological Chemistry 273: 30316–30320.

    Article  PubMed  CAS  Google Scholar 

  • Jelenska, J., M. Crawford, O. Harb, E. Zuther, R. Haselkorn, D. Roos, and P. Gornicki. 2001. Subcellular localization of acetyl-CoA carboxylase in the apicomplexan parasite Toxoplasma gondii. Proceedings of the National Academy of Science USA 98: 2723–2728.

    Article  CAS  Google Scholar 

  • Jomaa, H., J. Wiesner, S. Sanderbrand, B. Altincicek, C. Weidemeyer, M. Hintz, T. I., M. Eberl, J. Zeidler, H.K. Lichtenthaler, D. Soldati, and E. Beck. 1999. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285: 1573–1576.

    Article  PubMed  CAS  Google Scholar 

  • Kasper, L.H. 2002. Toxoplasma Infection. McGraw-Hill Companies, http://www.harrisonsonline.com.

  • Khan, A., T. Slifer, F. Araujo, and J. Remington. 1996. Trovafloxacin is active against Toxoplasma gondii. Antimicrobial Agents and Chemotherapy 40: 1855–1859.

    PubMed  CAS  Google Scholar 

  • Kohler, S., C.F. Delwiche, P.W. Denny, L.G. Tilney, P. Webster, R.J.M. Wilson, J.D. Palmer, and D.S. Roos. 1997. A plastid of probable green algal origin in apicomplexan parasites. Science 275: 1485–1489.

    Article  PubMed  CAS  Google Scholar 

  • Lang-Unnasch, N., M.E. Reith, J. Munholland, and J.R. Barta. 1998. Plastids are widespread and ancient in parasites of the phylum Apicomplexa. International Journal of Parasitology 28: 1743–1754.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler, H.K. 1999. The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology 50: 47–65.

    Article  PubMed  CAS  Google Scholar 

  • —. 2000. Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochemical Society Transactions 28: 785–789.

    Article  PubMed  CAS  Google Scholar 

  • —, J. Zeidler, J. Schwender, and C. Muller. 2000. The non-mevalonate isoprenoid biosynthesis of plants as a test system for new herbicides and drugs against pathogenic bacteria and the malaria parasite. Z Naturforsch 55: 305–313.

    Google Scholar 

  • McConkey, G.A., M.J. Rogers, and T.F. McCutchan. 1997. Inhibition of Plasmodium falciparum protein synthesis: targeting the plastid-like organelle with thiostrepton. Journal of Biological Chemistry 272: 2046–2049.

    Article  PubMed  CAS  Google Scholar 

  • McFadden, G.I. 1999. Plastids and protein targeting. Journal of Eukaryotic Microbiology 46: 339–346.

    Article  PubMed  CAS  Google Scholar 

  • —, M.E. Reith, J. Munholland, and N. Lang-Unnasch. 1996. Plastid in human parasites. Nature 381: 482.

    Article  PubMed  Google Scholar 

  • —, and D.S. Roos. 1999. Apicomplexan plastid as drug targets. Trends in Microbiology 7: 328–333.

    Article  PubMed  Google Scholar 

  • McLeod, R., S.P. Muench, J.B. Rafferty, D.E. Kyle, E.J. Mui, M.J. Kirisits, D.G. Mack, C.W. Roberts, B.U. Samuel, R.E. Lyons, M. Dorris, W.K. Milhous, and D.W. Rice. 2001. Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of Apicomplexan Fab I. International Journal of Parasitology 31: 109–113.

    Google Scholar 

  • McMurray, L.M., M. Oethinger, and S.B. Levy. 1998. Triclosan targets lipid synthesis. Nature 394: 531–532..

    Article  CAS  Google Scholar 

  • Neuhaus, E.H., and M.J. Emes. 2000. Nonphotosynthetic metabolism in plastids. Annual Review of Plant Physiology and Plant Molecular Biology 51: 111–140.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, I., A. Kawaguchi, and M. Yamada. 1986. Effect of thiolactomycin on the individual enzymes of the fatty acid synthase system in Escherichia coli. Journal of Biochemistry (Tokyo) 99: 1447–1454.

    CAS  Google Scholar 

  • Nissen, P., J. Hansen, N. Ban, P.B. Moore, and T.A. Steitz. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–930.

    Article  PubMed  CAS  Google Scholar 

  • Onda, Y., T. Matsumura, Y. Kimata-Ariga, H. Sakakibara, T. Sugiyama, and T. Hase. 2000. Differential Interaction of Maize Root Ferredoxin: NADP+ Oxidoreductase with Photosynthetic and Non-Photosynthetic Ferredoxin Isoproteins. Plant Physiology 123: 1037–1046.

    Article  PubMed  CAS  Google Scholar 

  • Perozzo, R., M. Kuo, A.S. Sidhu, J.T. Valiyaveettil, R. Bittman, W.R. Jacobs, JR., D.A. Fidock, and J.C. Sacchettini. 2002. Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. Journal of Biological Chemistry 277: 13106–13114.

    Article  PubMed  CAS  Google Scholar 

  • Pfefferkorn, E.R., R.F. Nothnagel, and S.E. Borotz. 1992. Parasiticidal effect of clindamycin on Toxoplasma gondii grown in cultured cells and selection of a drug-resistant mutant. Antimicrobial Agents and Chemotherapy 36: 1091–1096.

    PubMed  CAS  Google Scholar 

  • Rawsthorne, S. 2002. Carbon flux and fatty acid synthesis in plants. Progress in Lipid Research 41: 182–196.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, M.J., Y.V. Bukhman, T.F. McCutchan, and D.E. Draper. 1997. Interaction of thiostrepton with an RNA fragment derived from the plastid-encoded ribosomal RNA of the malaria parasite. RNA 3: 815–820.

    PubMed  CAS  Google Scholar 

  • —, E. Cundliffe, and T.F. McCutchan. 1998. The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite. Antimicrobial Agents and Chemotherapy 42: 715–716.

    PubMed  CAS  Google Scholar 

  • Roos, D.S., M.J. Crawford, R.G.K. Donald, J.C. Kissinger, L.J. Klimczak, and B. Striepen. 1999. Origin, targeting, and function of the apicomplexan plastid. Current Opinion in Microbiology 2: 426–432.

    Article  PubMed  CAS  Google Scholar 

  • Roy, A., R. Cox, D. Williamson, and R. Wilson. 1999. Protein synthesis in the plastid of Plasmodium falciparum. Protist 150: 183–188.

    PubMed  CAS  Google Scholar 

  • Sato, S., and R.J.M. Wilson. 2002. The genome of Plasmodium falciparum encodes an active delta-aminolevulinic acid dehydratase. Current Genetics 40: 391–398.

    Article  PubMed  CAS  Google Scholar 

  • Shanklin, J., and E.B. Cahoon. 1998. Desaturation and related modifications of fatty acids. Annual Review of Plant Physiology and Plant Molecular Biology 49: 611–641.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A.G. 1988. Subcellular localization of two porphyrin-synthesis enzymes in Pisum sativum (pea) and Arum (cuckoo-pint) species. Biochemistry Journal 249: 423–428.

    CAS  Google Scholar 

  • Smith, S. 1994. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB Journal 8: 1248–1259.

    PubMed  CAS  Google Scholar 

  • Soldati, D., and J.C. Boothroyd. 1993. Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science 260: 349–352.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, M., J. Li, S. Kumar, M.J. Rogers, and T.F. McCutchan. 2000. Effects of interruption of apicoplast function on malaria infection, development, and transmission. Molecular and Biochemical Parasitology 109: 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Surolia, N., and G. Padmanaban. 1992. de novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochemical Biophysica Research Communication 187: 744–750.

    Article  CAS  Google Scholar 

  • Van Dooren, G.G., V. Su, M.C. Diombrain, and G.I. McFadden. 2002. Processing of an apicoplast leader sequence in Plasmodium falciparum, and the identification of a putative leader cleavage enzyme. Journal of Biological Chemistry 25: 25.

    Google Scholar 

  • Vollmer, M., N. Thomsen, S. Wiek, and F. Seeber. 2001. Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. Journal of Biological Chemistry 276: 5483–5490.

    Article  PubMed  CAS  Google Scholar 

  • Waller, R.F., P.J. Keeling, R.G.K. Donald, B. Striepen, E. Handman, N. Lang-Unnasch, A.F. Cowman, G.S. Besra, D.S. Roos, and G.I. McFadden. 1998. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proceedings of the National Academy of Science USA 95: 12352–12357.

    Article  CAS  Google Scholar 

  • —, M.B. Reed, A.F. Cowman, and G.I. McFadden. 2000. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO Journal 19: 1794–1802.

    Article  PubMed  CAS  Google Scholar 

  • Weissig, V., T.S. Vetro-Widenhouse, and T.C. Rowe. 1997. Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium falciparum. DNA and Cell Biology 16: 1483–1492.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, I. 1993. Plastids: better red than dead? Nature 366: 638.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, R.J.M., P.W. Denny, P.R. Preiser, K. Roberts, A. Roy, A. Whyte, M. Strath, D.J. Moore, and D.H. Williamson. 1996. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. Journal of Molecular Biology 261: 155–172.

    Article  PubMed  CAS  Google Scholar 

  • Zuther, E., J.J. Johnson, R. Haselkorn, R. McLeod, and P. Gornicki. 1999. Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. Proceedings of the National Academy of Science USA 96: 13387–13392.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Yung, S.C., Lang-Unnasch, N. (2004). Targeting the toxoplasma gondii apicoplast for chemotherapy. In: Lindsay, D.S., Weiss, L.M. (eds) Opportunistic Infections: Toxoplasma, Sarcocystis, and Microsporidia. World Class Parasites, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-7846-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-7846-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7814-9

  • Online ISBN: 978-1-4020-7846-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics