Skip to main content

Polarized Light Transport into Scattering Media Using a Quaternion-Based Monte Carlo

  • Conference paper
Optical Waveguide Sensing and Imaging

Part of the book series: NATO Science for Peace and Security Series ((NAPSB))

  • 1619 Accesses

Polarized light transport into a scattering media can be modeled using polarization sensitive Monte Carlo programs. This Chapter will illustrate one such programs based on quaternion algebra. In the program the polarization reference plane is tracked using two unit-vectors u and v, quaternions are used to accomplish the rotation of the polarization reference plane. Comparison with Adding Doubling models showed that our Monte Carlo algorithm yields results with less than 1% error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Côté and I. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express 13, 148-163, (2005).

    Article  ADS  Google Scholar 

  2. S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580-1588, (2000).

    Article  ADS  Google Scholar 

  3. J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420-4438, (2005).

    Article  ADS  Google Scholar 

  4. A. N. Yaroslavsky, V. Neel and R. Rox Anderson “Demarcation of Nonmelanoma Skin Cancer Margins in Thick Excisions Using Multispectral Polarized Light Imaging,” Journal of Investigative Dermatology 121, 259-266, (2003).

    Article  Google Scholar 

  5. J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Design, testing and clinical studies of a hand-held polarized light camera,” Journal of Biomedical Optics, 9, 1305-1310, (2004).

    Article  ADS  Google Scholar 

  6. V. Backman, M. B. Wallace, L. T. Perelman et al. “Detection of prei nvasive cancer cells,” Nature 406: 35-36, (2000).

    Article  ADS  Google Scholar 

  7. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355-1357, (2000).

    Article  ADS  Google Scholar 

  8. G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7, 1519-1527, (1967).

    Article  ADS  Google Scholar 

  9. G. W. Kattawar and G. N. Plass, “Degree and direction of polarization of multiple scattered light. 1: Homogeneous cloud layers,” Appl. Opt. 11, 2851-2865, (1972).

    Article  ADS  Google Scholar 

  10. P. Bruscaglione, G. Zaccanti, and W. Qingnong, “Transmission of a pulsed polarized light beam through thick turbid media: numerical results,” Appl. Opt. 32, 6142-6150, (1993).

    Article  ADS  Google Scholar 

  11. S. Bianchi, A. Ferrara, and C. Giovannardi, “Monte Carlo simulations of dusty spiral galaxies: extinction and polarization properties,” American Astronomical Society 465, 137-144, (1996).

    Google Scholar 

  12. S. Bianchi, Estinzione e polarizzazione della radiazione nelle galassie a spirale, Tesi di Laura (in Italian), 1994.

    Google Scholar 

  13. S. Martinez and R. Maynard, “Polarization Statistics in Multiple Scattering of light: a Monte Carlo approach,” in Localization and Propagation of classical waves in random and periodic structures (Plenum Publishing Corporation New York, 1993).

    Google Scholar 

  14. S. Martinez, Statistique de polarization et effet Faraday en diffusion multiple de la lumiere Ph.D. Thesis (in French and English), 1984.

    Google Scholar 

  15. J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl Optics; 32, 6535-6546, (1992).

    Article  ADS  Google Scholar 

  16. M. J. Rakovic, G. W. Kattawar, M. Mehrubeoglu, B. D. Cameron, L. -H. Wang, S. Rastegar, and G. L. Cote, “Light backscattering polarization patterns from turbid media: theory and experiment,” Appl. Opt. 38, 3399-3408, (1999).

    Article  ADS  Google Scholar 

  17. X. Wang and L. V. Wang, “Propagation of polarized light in birefringent turbid media: A Monte Carlo study,” J. Biomed. Opt. 7, 279-290, (2002).

    Article  ADS  Google Scholar 

  18. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10392-10405, (2005).

    Article  ADS  Google Scholar 

  19. M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media”, Opt. Express 26, 6530-6539, (2004).

    Article  ADS  Google Scholar 

  20. N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335-341, (1949).

    Article  MATH  MathSciNet  Google Scholar 

  21. L. H. Wang, S. L. Jacques, and L. -Q. Zheng, “MCML - Monte Carlo modeling of photon transport in multi-layered tissues,” Computer Methods and Programs in Biomedicine 47, 131-146, (1995).

    Article  Google Scholar 

  22. E. Hecht, Optics 4th ed, Pearson Addison Weasley Ed. 2002.

    Google Scholar 

  23. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, (Wiley Science Paperback Series, 1998).

    Google Scholar 

  24. K. Shoemake, “Animating rotation with quaternion curves,” Computer Graphics 19, 245-254, (1985).

    Article  Google Scholar 

  25. J. J. Craig, Introduction to robotics. Mechanics and controls, (Addison-Weseley Publishing Company, 1986).

    Google Scholar 

  26. http://faculty.cua.edu/ramella/page2/MonteCarlo/index.html.

  27. K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat Transfer. 46, 413-423, (1991).

    Article  ADS  Google Scholar 

  28. F. Jaillon and H. Saint-Jalmes, “Description and time reduction of a Mnte Carlo code to simulate propagation of polarized light trhough scattering media.” Appl Optics 42, 16 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, B.V

About this paper

Cite this paper

Ramella-Roman, J.C. (2008). Polarized Light Transport into Scattering Media Using a Quaternion-Based Monte Carlo. In: Bock, W.J., Gannot, I., Tanev, S. (eds) Optical Waveguide Sensing and Imaging. NATO Science for Peace and Security Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6952-9_10

Download citation

Publish with us

Policies and ethics