Several pathovars of Pseudomonas syringae produce extracellular toxins that often increase their virulence towards plants. Phaseolotoxin is a modified tripeptide that inhibits the key plant enzyme, ornithine carbamoyl transferase (OCTase), and is produced by the P. syringae pvs. phaseolicola and actinidiae as well as by a single strain of P. syringae pv. syringae, CFBP3388. Genes required for the biosynthesis of phaseolotoxin map to a ca. 28-kb genomic region designated as the Pht cluster, which is included in a larger region characteristic for a pathogenicity island. The Pht cluster included argK, a gene coding for an OCTase which confers resistance to phaseolotoxin. Since the sequence of argK is identical among strains of P. syringae pv. phaseolicola and P. syringae pv. actinidiae, others suggested that the argK-tox cluster might have been horizontally acquired. The comparison of the published sequence of four Pht clusters shows a very high level of identity (around 99.8%), although the few occurring nt changes often result in important changes in the corresponding deduced gene products. The sequence and the overall organization of the Pht cluster and flanking regions is conserved in all examined strains of pathovars phaseolicola and actinidiae that produced phaseolotoxin. However, PCR experiments indicated that the sequence and/or organization of the Pht cluster are only poorly conserved in P. syringae pv. syringae CFBP3388. The sequence of a 2.4-kb fragment from the Pht cluster from this strain, spanning from phtO to amtA, showed an 83% overall identity with the corresponding sequence of P. syringae pv. phaseolicola.1448A. Collectively, our results indicated that the pathogenicity island containing the Pht cluster has evolutionary invaded P. syringae several times.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguilera S., López-López K., Nieto Y., Garcidueñas-Piña R., Hernández-Guzmán G., Hernández-Flores J. L., Murillo J. and Alvarez-Morales A. (2007). Functional characterization of the gene cluster from Pseudomonas syringae pv. phaseolicola NPS3121 involved in the synthesis of phaseolotoxin. J Bacteriol 189: 2834–2843.
Bachmann A. S., Matile P. and Slusarenko A. J. (1998). Inhibition of ornithine decarboxylase activity by phaseolotoxin: implications for symptom production in halo blight of French bean. Physiol Mol Plant Pathol 53: 287–299.
Bender C. L., Alarcón-Chaidez F. and Gross D. C. (1999). Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63: 266–292.
Gardan L., Shafik H., Belouin S., Broch R., Grimont F. and Grimont P. A. D. (1999). DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol 49: 469–478.
Genka H., Baba T., Tsuda M., Kanaya S., Mori H., Yoshida T., Noguchi M. T., Tsuchiya K. and Sawada H. (2006). Comparative analysis of argK-tox clusters and their flanking regions in phaseolotoxin-producing Pseudomonas syringae pathovars. J Mol Evol 63: 401–414.
Han H. S., Oak E. J., Koh Y. J., Hur J.-S. and Jung J. S. (2003). Characterization of Pseudomonas syringae pv. actinidiae isolated in Korea and genetic relationship among coronatine-producing pathovars based on cmaU sequences. Acta Hort 610: 403–408.
Joardar V., Lindeberg M., Jackson R. W., Selengut J., Dodson R., Brinkac L. M., Daugherty S. C., DeBoy R., Durkin A. S., Giglio M. G., Madupu R., Nelson W. C., Rosovitz M. J., Sullivan S., Crabtree J., Creasy T., Davidsen T., Haft D. H., Zafar N., Zhou L. W., Halpin R., Holley T., Khouri H., Feldblyum T., White O., Fraser C. M., Chatterjee A. K., Cartinhour S., Schneider D. J., Mansfield J., Collmer A. and Buell C. R. (2005). Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187: 6488–6498.
Langley D. B., Templeton M. D., Fields B. A., Mitchell R. E. and Collyer C. A. (2000). Mechanism of inactivation of ornithine transcarbamoylase by Nδ-(N’-sulfodiaminophosphinyl)-L-ornithine, a true transition state analogue? Crystal structure and implications for catalytic mechanism. J Biol Chem 275: 20012–20019.
Mitchell R. E. (1976a). Bean halo-blight toxin. Nature 260: 75–76.
Mitchell R. E. (1976b). Isolation and structure of a chlorosis-inducing toxin of Pseudomonas phaseolicola. Phytochemistry 15: 1941–1947.
Mosqueda G., Van den Broeck G., Saucedo O., Bailey A., Alvarez-Morales A. and L. H.-E. (1990). Isolation and characterization of the gene from Pseudomonas syringae pv. phaseolicola encoding the phaseolotoxin-insensitive ornithine carbamoyltransferase. Mol Gen Genet 222: 461–466.
Myers E. W. and Miller W. (1988). Optimal alignments in linear space. Comput Appl Biosci 4: 11–17.
Prosen D., Hatziloukas E., Schaad N. W. and Panopoulos N. J. (1993). Specific detection of Pseudomonas syringae pv. phaseolicola DNA in bean seed by polymerase chain reaction-based amplification of a phaseolotoxin gene region. Phytopathology 83: 965–970.
Rico A., López R., Asensio C., Aizpún M., Asensio-S.-Manzanera C. and Murillo J. (2003). Nontoxigenic strains of P. syringae pv. phaseolicola are a main cause of halo blight of beans in Spain and escape current detection methods. Phytopathology 93: 1553–1559.
Rozas J., Sanchez-DelBarrio J. C., Messeguer X. and Rozas R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.
Sarkar S. F. and Guttman D. S. (2004). Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol 70: 1999–2012.
Sawada H., Kanaya S., Tsuda M., Suzuki F., Azegami K. and Saitou N. (2002). A phylogenomic study of the OCTase genes in Pseudomonas syringae pathovars: the horizontal transfer of the argK-tox cluster and the evolutionary history of OCTase genes on their genomes. J Mol Evol 54: 437–457.
Sawada H., Suzuki F., Matsuda I. and Saitou N. (1999). Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. J Mol Evol 49: 627–644.
Schwartz S., Elnitski L., Li M., Weirauch M., Riemer C., Smit A., Program N. C. S., Green E. D., Hardison R. C. and Miller W. (2003). MultiPipMaker and supporting tools: alignments and analysis of multiple genomic DNA sequences. Nucleic Acids Res 31: 3518–3524.
Tamura K., Imamura M., Yoneyama K., Kohno Y., Takikawa Y., Yamaguchi I. and Takahashi H. (2002). Role of phaseolotoxin production by Pseudomonas syringae pv. actinidiae in the formation of halo lesions of kiwifruit canker disease. Physiol Mol Plant Pathol 60: 207–214.
Tamura K., Takikawa Y., Tsuyumu S. and Goto M. (1989). Characterization of the toxin produced by Pseudomonas syringae pv. actinidiae, the causal bacterium of kiwifruit canker. Ann Phytopathol Soc Japan 55: 512.
Tourte C. and Manceau C. (1995). A strain of Pseudomonas syringae which does not belong to pathovar phaseolicola produces phaseolotoxin. Eur J Plant Pathol 101: 483–490.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer Science + Business Media, B.V
About this chapter
Cite this chapter
de la Fuente, L.N., Führer, M.E., Aguilera, S., Alvarez-Morales, A., Murillo, J. (2008). Conservation of the Pathogenicity Island for Biosynthesis of the Phytotoxin Phaseolotoxin in Pseudomonas syringae Pathovars. In: Fatmi, M., et al. Pseudomonas syringae Pathovars and Related Pathogens – Identification, Epidemiology and Genomics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6901-7_25
Download citation
DOI: https://doi.org/10.1007/978-1-4020-6901-7_25
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-6900-0
Online ISBN: 978-1-4020-6901-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)