Skip to main content

It has long been a common sense that sex hormones are synthesized in the gonads, and reach the brain via the blood circulation. In contrast with this view, the authors demonstrate that estrogen and androgen are also synthesized locally in the hippocampus of adult animals, from cholesterol through dehydroepiandrosterone in hippocampal neurons. These neurosteroids are synthesized by cytochrome P450s and hydroxysteroid dehydrogenases and 5α-reductase. The expression levels of enzymes are as low as 1/200–1/50,000 of those in endocrine organs, preventing quantitative investigations. Localization of P450(17α) and P450arom is observed in synapses of principal glutamatergic neurons, in addition to endoplasmic reticulum, suggesting synaptocrine machanisms.

Because several nanomolar estrogen and androgen are observed in the hippocampus, they are expected to have physiological functions. Estrogen modulates memory-related synaptic plasticity not only slowly, but also rapidly in the hippocampus. Molecular mechanisms of rapid action via membrane receptors have not been well elucidated in comparison with those of delayed action via genomic processes. We here describe rapid modulation of representative synaptic plasticity, i.e., long-term depression (LTD), long-term potentiation (LTP) and spinogenesis, by 17β-estradiol, selective estrogen agonists.

We demonstrate that 1–10 nM estradiol induced rapid enhancement of LTD within 1 h in CA1, CA3 and dentate gyrus (DG). On the other hand, the modulation of LTP by estradiol is not statistically significant. The total density of spines is increased in CA1 pyramidal neurons, within 2 h after application of estradiol. The total density of thorns (postsynaptic spine-like structure) is, however, decreased by estradiol in CA3 pyramidal neurons. Both the increase of spines in CA1 and the decrease of thorns in CA3 are driven by Erk MAP kinase. Only agonist of estrogen receptor ERalpha induces the same enhancement/suppression effect as estradiol on both LTD and spinogenesis in CA1 and CA3. ERbeta agonist induces completely different results.

Estrogen receptor ERalpha localizes in spines and presynapses of principal glutamatergic neurons in CA1, CA3 and DG. The same ERalpha is also located in nuclei. Identification of ERalpha is successfully performed using purified RC-19 antibody. Attention must be paid to the fact that non-purified ERalpha antisera often react significantly with unknown proteins, resulting in wrong staining different from real ERalpha distribution. Identification of kinases/phosphatases in downstream of ERalpha as well as other synaptic estrogen receptors is essential to advance the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kimoto T, Tsurugizawa T, Ohta Y, et al. Neurosteroid synthesis by cytochrome p450-containing systems localized in the rat brain hippocampal neurons: N-methyl-D-aspartate and calcium-dependent synthesis. Endocrinology 2001; 142:3578–3589.

    Article  PubMed  CAS  Google Scholar 

  2. Kawato S, Hojo Y, Kimoto T. Histological and metabolism analysis of P450 expression in the brain. Methods Enzymol 2002; 357:241–249.

    Article  PubMed  CAS  Google Scholar 

  3. Kawato S, Yamada M, Kimoto T. Brain neurosteroids are 4th generation neuromessengers in the brain: cell biophysical analysis of steroid signal transduction. Adv Biophys 2003; 37:1–48.

    Article  PubMed  CAS  Google Scholar 

  4. Hojo Y, Hattori TA, Enami T, et al. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. Proc Natl Acad Sci USA 2004; 101:865–870.

    Article  PubMed  CAS  Google Scholar 

  5. Kretz O, Fester L, Wehrenberg U, et al. Hippocampal synapses depend on hippocampal estrogen synthesis. J Neurosci 2004; 24:5913–5921.

    Article  PubMed  CAS  Google Scholar 

  6. Baulieu EE. Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res 1997; 52:1–32.

    PubMed  CAS  Google Scholar 

  7. Corpechot C, Robel P, Axelson M, et al. Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proc Natl Acad Sci USA 1981; 78:4704–4707.

    Article  PubMed  CAS  Google Scholar 

  8. Robel P, Bourreau E, Corpechot C, et al. Neuro-steroids: 3 beta-hydroxy-delta 5-derivatives in rat and monkey brain. J Steroid Biochem 1987; 27:649–655.

    Article  PubMed  CAS  Google Scholar 

  9. Warner M, Gustafsson JA. Cytochrome P450 in the brain: neuroendocrine functions. Front Neuroendocrinol 1995; 16:224–236.

    Article  PubMed  CAS  Google Scholar 

  10. Baulieu EE, Robel P. Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) as neuroactive neurosteroids. Proc Natl Acad Sci USA 1998; 95:4089–4091.

    Article  PubMed  CAS  Google Scholar 

  11. Le Goascogne C, Sananes N, Gouezou M, et al. Immunoreactive cytochrome P-450(17 alpha) in rat and guinea-pig gonads, adrenal glands and brain. J Reprod Fertil 1991; 93:609–622.

    PubMed  CAS  Google Scholar 

  12. Mellon SH, Deschepper CF. Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 1993; 629:283–292.

    Article  PubMed  CAS  Google Scholar 

  13. Bi R, Broutman G, Foy MR, et al. The tyrosine kinase and mitogen-activated protein kinase pathways mediate multiple effects of estrogen in hippocampus. Proc Natl Acad Sci USA 2000; 97:3602–3607.

    Article  PubMed  CAS  Google Scholar 

  14. Foy MR, Xu J, Xie X, et al. 17beta-estradiol enhances NMDA receptor-mediated EPSPs and long-term potentiation. J Neurophysiol 1999; 81:925–929.

    PubMed  CAS  Google Scholar 

  15. Pozzo-Miller LD, Inoue T, Murphy DD. Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices. J Neurophysiol 1999; 81:1404–1411.

    PubMed  CAS  Google Scholar 

  16. Shibuya K, Takata N, Hojo Y, et al. Hippocampal cytochrome P450s synthesize brain neurosteroids which are paracrine neuromodulators of synaptic signal transduction. Biochim Biophys Acta 2003; 1619:301–316.

    PubMed  CAS  Google Scholar 

  17. Woolley CS. Estrogen-mediated structural and functional synaptic plasticity in the female rat hippocampus. Horm Behav 1998; 34:140–148.

    Article  PubMed  CAS  Google Scholar 

  18. Woolley CS, McEwen BS. Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. J Neurosci 1994; 14:7680–7687.

    PubMed  CAS  Google Scholar 

  19. Sanne JL, Krueger KE. Expression of cytochrome P450 side-chain cleavage enzyme and 3 beta-hydroxysteroid dehydrogenase in the rat central nervous system: a study by polymerase chain reaction and in situ hybridization. J Neurochem 1995; 65:528–536.

    Article  PubMed  CAS  Google Scholar 

  20. Murakami G, Tanabe N, Ishii HT, et al. Role of cytochrome p450 in synaptocrinology: endogenous estrogen synthesis in the brain hippocampus. Drug Metab Rev 2006; 38:353–369.

    Article  PubMed  CAS  Google Scholar 

  21. Furukawa A, Miyatake A, Ohnishi T, Ichikawa Y. Steroidogenic acute regulatory protein (StAR) transcripts constitutively expressed in the adult rat central nervous system: colocalization of StAR, cytochrome P-450SCC (CYP XIA1), and 3beta-hydroxysteroid dehydrogenase in the rat brain. J Neurochem 1998; 71:2231–2238.

    PubMed  CAS  Google Scholar 

  22. King SL, Marks MJ, Grady SR, et al. Conditional expression in corticothalamic efferents reveals a developmental role for nicotinic acetylcholine receptors in modulation of passive avoidance behavior. J Neurosci 2003; 23:3837–3843.

    PubMed  CAS  Google Scholar 

  23. Zwain IH, Yen SS. Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology 1999; 140:3843–3852.

    Article  PubMed  CAS  Google Scholar 

  24. Zwain IH, Yen SS. Dehydroepiandrosterone: biosynthesis and metabolism in the brain. Endocrinology 1999; 140:880–887.

    Article  PubMed  CAS  Google Scholar 

  25. Compagnone NA, Bulfone A, Rubenstein JL, Mellon SH. Steroidogenic enzyme P450c17 is expressed in the embryonic central nervous system. Endocrinology 1995; 136:5212–5223.

    Article  PubMed  CAS  Google Scholar 

  26. Wehrenberg U, Prange-Kiel J, Rune GM. Steroidogenic factor-1 expression in marmoset and rat hippocampus: co-localization with StAR and aromatase. J Neurochem 2001; 76:1879–1886.

    Article  PubMed  CAS  Google Scholar 

  27. Ivanova T, Beyer C. Ontogenetic expression and sex differences of aromatase and estrogen receptor-alpha/beta mRNA in the mouse hippocampus. Cell Tissue Res 2000; 300:231–237.

    Article  PubMed  CAS  Google Scholar 

  28. Beyenburg S, Watzka M, Blumcke I, et al. Expression of mRNAs encoding for 17beta-hydroxisteroid dehydrogenase isozymes 1, 2, 3 and 4 in epileptic human hippocampus. Epilepsy Res 2000; 41:83–91.

    Article  PubMed  CAS  Google Scholar 

  29. Jung-Testas I, Hu ZY, Baulieu EE, Robel P. Neurosteroids: biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells. Endocrinology 1989; 125:2083–2091.

    Article  PubMed  CAS  Google Scholar 

  30. Koenig HL, Schumacher M, Ferzaz B, et al. Progesterone synthesis and myelin formation by Schwann cells. Science 1995; 268:1500–1503.

    Article  PubMed  CAS  Google Scholar 

  31. Tsutsui K, Ukena K, Usui M, et al. Novel brain function: biosynthesis and actions of neurosteroids in neurons. Neurosci Res 2000; 36:261–273.

    Article  PubMed  CAS  Google Scholar 

  32. Jakab RL, Horvath TL, Leranth C, et al. Aromatase immunoreactivity in the rat brain: gonadectomy-sensitive hypothalamic neurons and an unresponsive “limbic ring” of the lateral septum-bed nucleus-amygdala complex. J Steroid Biochem Mol Biol 1993; 44:481–498.

    Article  PubMed  CAS  Google Scholar 

  33. Shinzawa K, Ishibashi S, Murakoshi M, et al. Relationship between zonal distribution of microsomal cytochrome P-450s (P-450(17) alpha, lyase and P-450C21) and steroidogenic activities in guinea-pig adrenal cortex. J Endocrinol 1988; 119:191–200.

    Article  PubMed  CAS  Google Scholar 

  34. Le Goascogne C, Robel P, Gouezou M, et al. Neurosteroids: cytochrome P-450scc in rat brain. Science 1987; 237:1212–1215.

    Article  PubMed  CAS  Google Scholar 

  35. Mensah-Nyagan AG, Do-Rego JL, Beaujean D, et al. Neurosteroids: expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol Rev 1999; 51:63–81.

    PubMed  CAS  Google Scholar 

  36. Kibaly C, Patte-Mensah C, Mensah-Nyagan AG. Molecular and neurochemical evidence for the biosynthesis of dehydroepiandrosterone in the adult rat spinal cord. J Neurochem 2005; 93:1220–1230.

    Article  PubMed  CAS  Google Scholar 

  37. Wang MD, Wahlstrom G, Backstrom T. The regional brain distribution of the neurosteroids pregnenolone and pregnenolone sulfate following intravenous infusion. J Steroid Biochem Mol Biol 1997; 62:299–306.

    Article  PubMed  CAS  Google Scholar 

  38. Kawato S, Ogiue-Ikeda M, Tanabe N, et al. Rapid modlulation of long-term depression and spinogenesis by endocrine disrupters in adult rat hippocampus. In 4th International Meeting Steroids and Nerbous System. Torino, 2007.

    Google Scholar 

  39. Liu S, Sjovall J, Griffiths WJ. Neurosteroids in rat brain: extraction, isolation, and analysis by nanoscale liquid chromatography-electrospray mass spectrometry. Anal Chem 2003; 75:5835–5846.

    Article  PubMed  CAS  Google Scholar 

  40. Higashi T, Sugitani H, Yagi T, Shimada K. Studies on neurosteroids XVI. Levels of pregnenolone sulfate in rat brains determined by enzyme-linked immunosorbent assay not requiring solvolysis. Biol Pharm Bull 2003; 26:709–711.

    Article  PubMed  CAS  Google Scholar 

  41. Liere P, Akwa Y, Weill-Engerer S, et al. Validation of an analytical procedure to measure trace amounts of neurosteroids in brain tissue by gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 2000; 739:301–312.

    Article  PubMed  CAS  Google Scholar 

  42. Vallee M, Mayo W, Darnaudery M, et al. Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc Natl Acad Sci USA 1997; 94:14865–14870.

    Article  PubMed  CAS  Google Scholar 

  43. Wu FS, Gibbs TT, Farb DH. Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol Pharmacol 1991; 40:333–336.

    PubMed  CAS  Google Scholar 

  44. Hojo Y, Nakajima K, Nakanishi H, et al.: Synthesis brain steroids and localization of P450s in the hippocampal neurons. In 20th IUBMB International Congress of Biochemistry and Molecular Biology, 2006:2PA-311.

    Google Scholar 

  45. Gu Q, Moss RL. 17 beta-Estradiol potentiates kainate-induced currents via activation of the cAMP cascade. J Neurosci 1996; 16:3620–3629.

    PubMed  CAS  Google Scholar 

  46. Ito K, Skinkle KL, Hicks TP. Age-dependent, steroid-specific effects of oestrogen on long-term potentiation in rat hippocampal slices. J Physiol 1999; 515 (Pt 1):209–220.

    Article  PubMed  CAS  Google Scholar 

  47. Mukai H, Tsurugizawa T, Ogiue-Ikeda M, et al. Local neurosteroid production in the hippocampus: influence on synaptic plasticity of memory. Neuroendocrinology 2006; 84:255–263.

    Article  PubMed  CAS  Google Scholar 

  48. Teyler TJ, Vardaris RM, Lewis D, Rawitch AB. Gonadal steroids: effects on excitability of hippocampal pyramidal cells. Science 1980; 209:1017–1018.

    Article  PubMed  CAS  Google Scholar 

  49. Mukai H, Tsurugizawa T, Murakami G, et al. Rapid modulation of long-term depression and spinogenesis via synaptic estrogen receptors in hippocampal principal neurons. J Neurochem 2007; 100:950–967.

    Article  PubMed  CAS  Google Scholar 

  50. Kawato S. Endocrine disrupters as disrupters of brain function: a neurosteroid viewpoint. Environ Sci 2004; 11:1–14.

    PubMed  CAS  Google Scholar 

  51. Migaud M, Charlesworth P, Dempster M, et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 1998; 396:433–439.

    Article  PubMed  CAS  Google Scholar 

  52. Lee HK, Kameyama K, Huganir RL, Bear MF. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 1998; 21:1151–1162.

    Article  PubMed  CAS  Google Scholar 

  53. Harrington WR, Sheng S, Barnett DH, et al. Activities of estrogen receptor alpha- and beta-selective ligands at diverse estrogen responsive gene sites mediating transactivation or transrepression. Mol Cell Endocrinol 2003; 206:13–22.

    Article  PubMed  CAS  Google Scholar 

  54. Yang SN, Tang YG, Zucker RS. Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J Neurophysiol 1999; 81:781–787.

    PubMed  CAS  Google Scholar 

  55. Lisman J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA 1989; 86:9574–9578.

    Article  PubMed  CAS  Google Scholar 

  56. Ogiue-Ikeda M, Tanabe N, Mukai H, et al. Rapid Modulation of Synaptic Plasticity by Estrogens as well as Endocrine Disrupters in Hippocampal Neurons. Brain Res Rev 2007 (in press).

    Google Scholar 

  57. Komatsuzaki Y, Murakami G, Tsurugizawa T, et al. Rapid spinogenesis of pyramidal neurons induced by activation of glucocorticoid receptors in adult male rat hippocampus. Biochem Biophys Res Commun 2005; 335:1002–1007.

    Article  PubMed  CAS  Google Scholar 

  58. Murakami G, Tsurugizawa T, Hatanaka Y, et al. Comparison between basal and apical dendritic spines in estrogen-induced rapid spinogenesis of CA1 principal neurons in the adult hippocampus. Biochem Biophys Res Commun 2006; 351:553–558.

    Article  PubMed  CAS  Google Scholar 

  59. Tsurugizawa T, Mukai H, Tanabe N, et al. Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus. Biochem Biophys Res Commun 2005; 337:1345–1352.

    Article  PubMed  CAS  Google Scholar 

  60. Mukai H, Tsurugizawa, T, Murakami G, Kominami S, Ishii T, Ogiue-Ikeda M, Takata N, Tanabe N, Furukawa A, Hojo Y, Morrison JH, Janssen WGM, Rose JA, Chambon P, Kato S, Izumi S, Yamazaki T, Kimoto T, Kawato S. Rapid Modulation of Long-term Depression and Spinogenesis Depending on Synaptic Estrogen Receptors in Principal Neurons of Hippocampus. J. Neurochem. 2007; 100:950–967.

    Article  PubMed  CAS  Google Scholar 

  61. Ishii H, Shibuya K, Ohta Y, et al. Enhancement of nitric oxide production by association of nitric oxide synthase with N-methyl-D-aspartate receptors via postsynaptic density 95 in genetically engineered Chinese hamster ovary cells: real-time fluorescence imaging using nitric oxide sensitive dye. J Neurochem 2006; 96:1531–1539.

    Article  PubMed  CAS  Google Scholar 

  62. Monaghan DT, Holets VR, Toy DW, Cotman CW. Anatomical distributions of four pharmacologically distinct 3H-L-glutamate binding sites. Nature 1983; 306:176–179.

    Article  PubMed  CAS  Google Scholar 

  63. Baude A, Nusser Z, Molnar E, et al. High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience 1995; 69:1031–1055.

    Article  PubMed  CAS  Google Scholar 

  64. Fritschy JM, Weinmann O, Wenzel A, Benke D. Synapse-specific localization of NMDA and GABA(A) receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol 1998; 390:194–210.

    Article  PubMed  CAS  Google Scholar 

  65. Reid CA, Fabian-Fine R, Fine A. Postsynaptic calcium transients evoked by activation of individual hippocampal mossy fiber synapses. J Neurosci 2001; 21:2206–2214.

    PubMed  CAS  Google Scholar 

  66. Reid CA. The role of dendritic spines: comparing the complex with the simple. Eur J Pharmacol 2002; 447:173–176.

    Article  PubMed  CAS  Google Scholar 

  67. Leranth C, Petnehazy O, MacLusky NJ. Gonadal hormones affect spine synaptic density in the CA1 hippocampal subfield of male rats. J Neurosci 2003; 23:1588–1592.

    PubMed  CAS  Google Scholar 

  68. Leranth C, Shanabrough M, Horvath TL. Hormonal regulation of hippocampal spine synapse density involves subcortical mediation. Neuroscience 2000; 101:349–356.

    Article  PubMed  CAS  Google Scholar 

  69. MacLusky NJ, Luine VN, Hajszan T, Leranth C. The 17alpha and 17beta isomers of estradiol both induce rapid spine synapse formation in the CA1 hippocampal subfield of ovariectomized female rats. Endocrinology 2005; 146:287–293.

    Article  PubMed  CAS  Google Scholar 

  70. Gould E, Woolley CS, Frankfurt M, McEwen BS. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 1990; 10:1286–1291.

    PubMed  CAS  Google Scholar 

  71. Woolley CS, Gould E, Frankfurt M, McEwen BS. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci 1990; 10:4035–4039.

    PubMed  CAS  Google Scholar 

  72. Woolley CS, McEwen BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci 1992; 12:2549–2554.

    PubMed  CAS  Google Scholar 

  73. Gu Q, Korach KS, Moss RL. Rapid action of 17beta-estradiol on kainate-induced currents in hippocampal neurons lacking intracellular estrogen receptors. Endocrinology 1999; 140:660–666.

    Article  PubMed  CAS  Google Scholar 

  74. Couse JF, Curtis SW, Washburn TF, et al. Analysis of transcription and estrogen insensitivity in the female mouse after targeted disruption of the estrogen receptor gene. Mol Endocrinol 1995; 9:1441–1454.

    Article  PubMed  CAS  Google Scholar 

  75. Kos M, Denger S, Reid G, et al. Down but not out? A novel protein isoform of the estrogen receptor alpha is expressed in the estrogen receptor alpha knockout mouse. J Mol Endocrinol 2002; 29:281–286.

    Article  PubMed  CAS  Google Scholar 

  76. Pendaries C, Darblade B, Rochaix P, et al. The AF-1 activation-function of ERalpha may be dispensable to mediate the effect of estradiol on endothelial NO production in mice. Proc Natl Acad Sci USA 2002; 99:2205–2210.

    Article  PubMed  CAS  Google Scholar 

  77. Dupont S, Krust A, Gansmuller A, et al. Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development 2000; 127:4277–4291.

    PubMed  CAS  Google Scholar 

  78. Pedram A, Razandi M, Levin ER. Nature of functional estrogen receptors at the plasma membrane. Mol Endocrinol 2006; 20:1996–2009.

    Article  PubMed  CAS  Google Scholar 

  79. Razandi M, Pedram A, Greene GL, Levin ER. Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells. Mol Endocrinol 1999; 13:307–319.

    Article  PubMed  CAS  Google Scholar 

  80. Milner TA, Ayoola K, Drake CT, et al. Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation. J Comp Neurol 2005; 491:81–95.

    Article  PubMed  CAS  Google Scholar 

  81. Thomas P, Pang Y, Filardo EJ, Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 2005; 146:624–632.

    Article  PubMed  CAS  Google Scholar 

  82. Revankar CM, Cimino DF, Sklar LA, et al. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 2005; 307:1625–1630.

    Article  PubMed  CAS  Google Scholar 

  83. Brailoiu E, Dun SL, Brailoiu GC, et al. Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. J Endocrinol 2007; 193:311–321.

    Article  PubMed  CAS  Google Scholar 

  84. Papadopoulos V. Peripheral-type benzodiazepine/diazepam binding inhibitor receptor: biological role in steroidogenic cell function. Endocr Rev 1993; 14:222–240.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, B.V

About this chapter

Cite this chapter

Kawato, S. et al. (2008). Local Production of Estrogen and its Rapid Modulatory Action on Synaptic Plasticity. In: Ritsner, M.S., Weizman, A. (eds) Neuroactive Steroids in Brain Function, Behavior and Neuropsychiatric Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6854-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6854-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6853-9

  • Online ISBN: 978-1-4020-6854-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics