Skip to main content

Toward an Understanding of Ultrafast Electron Transfer in Photosynthesis

  • Conference paper
Photosynthesis. Energy from the Sun

Abstract

The mechanism of electron transfer (ET) from reduced pheophytin (Pheo−) to the primary stable photosynthetic acceptor, a quinone (Q) molecule, is addressed by using high-level ab initio computations and realistic molecular models. The results reveal that the ET process involving the (Pheo−+Q) and (Pheo+Q−) oxidation states can be seen essentially as an ultrafast radiationless transition between the two hypersurfaces taking place via conical intersections (CIs) and is favoured when the topology of the interacting moieties makes possible some overlap between the lowest occupied molecular orbitals (LUMO) of the two systems. Thus, it is anticipated that large scale motions, which are difficult to monitor experimentally, may actually occur in the photosynthetic reaction centers of bacteria, algae, and higher plants, to fulfil the observed ultrafast ET processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almöf J, Fischer TH, Gassman PG, Ghosh A, Häser M (1993) Electron correlation in tetrapyrroles: Ab initio calculations on porphyrin and the tautomers of chlorin J Phys Chem 97:10964-10970.

    Google Scholar 

  • Andersson K, Malmqvist PÅ, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218-1226.

    Article  CAS  Google Scholar 

  • Andersson K et al., MOLCAS, version 6.0 (2004) Department of Theoretical Chemistry, Chemical Centre, University of Lund, P.O. Box 124, S-221 00 Lund, Sweden.

    Google Scholar 

  • Dekker JP, van Grondelle R (2000) Primary charge separa-tion in photosystem II. Photosynth Res 63:195-208.

    Article  PubMed  CAS  Google Scholar 

  • Domcke W, Yarkony DR, Köppel H (eds) (2004) Conical intersections: Electronic structure, dynamics and spec- troscopy. World Scientific, Singapore.

    Google Scholar 

  • Fernández E, Blancafort L, Olivucci M, Robb MA (2000) Intramolecular electron transfer: Independent (ground state) adiabatic (chemical) and nonadiabatic reaction pathways in bis(hydrazine) radical cations. J Am Chem Soc 122:7528-7533.

    Article  Google Scholar 

  • Forsberg J, Malmqvist PÅ (1997) Multiconfiguration per-turbation theory with imaginary level shift. Chem Phys Lett 274:196-204.

    Article  CAS  Google Scholar 

  • Frisch MJ et al., Gaussian 98 (Revision A.6) (1998) Gaussian Inc., Pittsburg.

    Google Scholar 

  • Frutos LM, Castaño O, Merchán M (2003) Theoretical determination of the singletsinglet and singlettriplet electronic spectra, lowest ionization potentials, and electron affinity of cyclooctatetraene. J Phys Chem A 107:5472-5478.

    Article  CAS  Google Scholar 

  • Gouterman M, Wagnière G, Snyder LC (1963) Spectra of porphyrins - Part II. Four orbital model. J Mol Spectrosc 11:108-127.

    Article  CAS  Google Scholar 

  • Hasegawa J, Ozeki Y, Ohkawa K, Hada M, Nakatsuji H (1998) Theoretical study of the excited states of chlorin, bacteriochlorin, pheophytin a, and chloro-phyll a by the SAC/SAC-CI method. J Phys Chem B 102:1320-1326.

    Article  CAS  Google Scholar 

  • Merchán M, Serrano-Andrés L (2005). In: Olivucci M (ed) Computational Photochemistry. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Olaso-González G, Merchán M, Serrano-Andrés L (2006) Ultrafast electron transfer in photosynthesis: Reduced pheophytin and quinone interaction mediated by coni-cal intersections. J Phys Chem B 110:24734-24739.

    Article  PubMed  Google Scholar 

  • Olivucci M. (ed) (2005) Computational photochemistry. In: Theoretical and Computational Chemistry, Vol. 16. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Pou-Amérigo R, Merchán M, Ortí E (1999) Theoretical study of the electronic spectrum of p-benzoquinone. J Chem Phys 110:9536-9546.

    Article  Google Scholar 

  • Rubio M, Roos BO, Serrano-Andrés L, Merchán M (1999) Theoretical tudy of the electronic spectrum of magne-sium-porphyrin. J Chem Phys 110:7202-7209.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

John F. Allen Elisabeth Gantt John H. Golbeck Barry Osmond

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, B.V.

About this paper

Cite this paper

Olaso-González, G., Merchán, M., Serrano-Andrés, L. (2008). Toward an Understanding of Ultrafast Electron Transfer in Photosynthesis. In: Allen, J.F., Gantt, E., Golbeck, J.H., Osmond, B. (eds) Photosynthesis. Energy from the Sun. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6709-9_146

Download citation

Publish with us

Policies and ethics