Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 615))

Cell death was observed and understood since the 19th century, but there was no experimental examination until the mid-20th century. Beginning in the 1960s, several laboratories demonstrated that cell death was biologically controlled (programmed) and that the morphology was common and not readily explained (apoptosis). By 1990, the genetic basis of programmed cell death had been established, and the first components of the cell death machinery (caspase 3, bcl-2, and Fas) had been identified, sequenced, and recognized as highly conserved in evolution. The rapid development of the field has given us substantial understanding of how cell death is achieved. However, this knowledge has made it possible for us to understand that there are multiple pathways to death and that the commitment to die is not the same as execution. A cell that has passed the commitment stage but is blocked from undergoing apoptosis will die by another route. We still must learn much more about how a cell commits to death and what makes it choose a path to die.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ameisen, J. C. and Capron, A. (1991). Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunol Today Dev 12, 102–105.

    Article  CAS  Google Scholar 

  • Beaulaton, J. and Lockshin, R. A. (1977). Ultrastructural study of the normal degeneration of the intersegmental muscles of Antheraea polyphemus and Manduca sexta (Insecta, Lepidoptera) with particular reference to cellular autophagy. J Morphol Dev 154, 39–58.

    Article  CAS  Google Scholar 

  • Beaulaton, J. and Lockshin, R. A. (1978). Ultrastructural study of neuromuscular relations during degeneration of the intersegmental muscles. Biol Cellulaire Dev 33, 169–174.

    Google Scholar 

  • Bortner, C. D. and Cidlowski, J. A. (2002). Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ Dev 9, 1307–1310.

    Article  CAS  Google Scholar 

  • Boya, P., Gonzalez-Polo, R. A., Casares, N., Perfettini, J. L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T., Pierron, G., Codogno, P., and Kroemer, G. (2005). Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol Dev 25, 1025–1040.

    Article  CAS  Google Scholar 

  • Clarke, P. G. H. and Clarke, S. (1995). Historic apoptosis. Nat Dev 378, 230.

    Article  CAS  Google Scholar 

  • Clarke, P. G. H. and Clarke, S. (1996). Nineteenth century research on naturally occurring cell death and related phenomena. Anat Embryol Dev 193, 81–99.

    CAS  Google Scholar 

  • Glücksmann, A. (1951). Cell deaths in normal vertebrate ontogeny. Biol. Rev. Cambridge Phil Soc Dev 26, 59–86.

    Article  Google Scholar 

  • Glücksmann, A. (1965). Cell death in normal development. Arch Biol (Liege) Dev 76, 419–437.

    Google Scholar 

  • Golstein, P. (1997). Controlling cell death [comment]. Sci Dev 275, 1081–1082.

    CAS  Google Scholar 

  • Golstein, P., Marguet, D., and Depraetere, V. (1995a). Fas bridging cell death and cytotoxicity: the reaper connection. Immunol Rev Dev 146, 45–56.

    Article  CAS  Google Scholar 

  • Golstein, P., Marguet, D., and Depraetere, V. (1995b). Homology between reaper and the cell death domains of Fas and TNFR1. Cell Dev 81, 185–186.

    CAS  Google Scholar 

  • Häcker, G. and Vaux, D. L. (1997). A chronology of cell death. Apoptosis 2, 247–256.

    Article  PubMed  Google Scholar 

  • Hensey, C. and Gautier, J. (1997). A developmental timer that regulates apoptosis at the onset of gastrulation. Mech Dev 69, 183–195.

    Article  PubMed  CAS  Google Scholar 

  • Hensey, C. and Gautier, J. (1999). Developmental regulation of induced and programmed cell death in Xenopus embryos. In: Mechanisms of Cell Death, eds. Z. Zakeri, R. A. Lockshin, and L. Benitez-Bribiesca, New York Academy of Sciences, New York City, pp. 105–119.

    Google Scholar 

  • Horvitz, H. R. (2003). Nobel lecture. Worms, life and death. Biosci Rep Dev 23, 239–303.

    Article  CAS  Google Scholar 

  • Janet, C. (1907). Anatomie du corselet et histolyse des muscles vibrateurs après le vol nuptial, chez la reine de la fourmi (Lasius niger). DuCourtieux et Gout, Limoges, pp. 1–150.

    Google Scholar 

  • Jaattela, M. (2004). Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene Dev 23, 2746–2756.

    Article  Google Scholar 

  • Kerr, J. F. R. (1971). Shrinkage necrosis: a distinct mode of cellular death. J Pathol Dev 105, 13–20.

    Article  CAS  Google Scholar 

  • Kerr, J. F. R. and Harmon, B. V. (1991). Definition and incidence of apoptosis: an historical perspective. In: Apopotosis: The Molecular Biology of Cell Death, eds. L. D. Tomei and F.O. Cope. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 5–30.

    Google Scholar 

  • Kerr, J. F. R., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer Dev 26, 239–257.

    CAS  Google Scholar 

  • Kroemer, G., El-Deiry, W. S., Golstein, P., Peter, M. E., Vaux, D., Vandenabeele, P., Zhivotovsky, B., Blagosklonny, M. V., Malorni, W., Knight, R. A., Piacentini, M., Nagata, S., and Melino, G. (2005). Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ Dev 12 (Suppl 2), 1463–1467.

    Article  CAS  Google Scholar 

  • Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokuhisa, T., and Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nat Dev 432, 1032–1036.

    Article  CAS  Google Scholar 

  • Lang-Rollin, I. C., Rideout, H. J., Noticewala, M., and Stefanis, L. (2003). Mechanisms of caspase-independent neuronal death: energy depletion and free radical generation. J Neurosci Dev 23, 11015–11025.

    CAS  Google Scholar 

  • Lockshin, R. A. (1969). Programmed cell death. Activation of lysis of a mechanism involving the synthesis of protein. J Insect Physiol Dev 15, 1505–1516.

    Article  CAS  Google Scholar 

  • Lockshin, R. A. and Beaulaton, J. (1974a). Programmed cell death. Cytochemical evidence for lysosomes during the normal breakdown of the intersegmental muscles. J Ultrastruct Res Dev 46, 43–62.

    Article  CAS  Google Scholar 

  • Lockshin, R. A. and Beaulaton, J. (1974b). Programmed cell death. Life Sci Dev 15, 1549–1565.

    Article  CAS  Google Scholar 

  • Lockshin, R. A. and Beaulaton, J. (1979). Cytological studies of dying muscle fibers of known physiological parameters. Tissue Cell Dev 11, 803–819.

    Article  CAS  Google Scholar 

  • Lockshin, R. A. and Beaulaton, J. (1981). Cell death: questions for histochemists concerning the causes of the various cytological changes. Histochem J Dev 13, 659–666.

    Article  CAS  Google Scholar 

  • Lockshin, R. A. and Williams, C. M. (1964). Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol Dev 10, 643–649.

    Article  CAS  Google Scholar 

  • Lockshin, R. A. and Williams, C. M. (1965a). Programmed cell death. III. Neural control of the breakdown of the intersegmental muscles. J Insect Physiol Dev 11, 605–610.

    Google Scholar 

  • Lockshin, R. A. and Williams, C. M. (1965b). Programmed cell death. I. Cytology of the degeneration of the intersegmental muscles of the pernyi silkmoth. J Insect Physiol Dev 11, 123–133.

    Article  CAS  Google Scholar 

  • Lockshin, R. A. and Williams, C. M. (1965c). Programmed cell death. IV. The influence of drugs on the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol Dev 11, 803–809.

    Article  CAS  Google Scholar 

  • Lockshin, R. A. and Williams, C. M. (1965d). Programmed cell death. V. Cytolytic enzymes in relation to the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol Dev 11, 831–844.

    Article  CAS  Google Scholar 

  • Lockshin, R. A. and Zakeri, Z. (2001). Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol Dev 2, 545–550.

    Article  CAS  Google Scholar 

  • Lockshin, R. A. and Zakeri, Z. (2004a). When Cells Die II. Wiley-Liss, New York.

    Google Scholar 

  • Lockshin, R. A. and Zakeri, Z. (2004b). Apoptosis, autophagy, and more. Int J Biochem Cell Biol Dev 36, 2405–2419.

    Article  CAS  Google Scholar 

  • Lockshin, R. A. and Zakeri, Z. (2004c). Caspase-independent cell death? Oncogene Dev 23, 2766–2773.

    Article  CAS  Google Scholar 

  • Lum, J. J., Bauer, D. E., Kong, M., Harris, M. H., Li, C., Lindsten, T., and Thompson, C. B. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell Dev 120, 237–248.

    CAS  Google Scholar 

  • Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E. L., Hall, D. H., and Levine, B. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Sci Dev 301, 1387–1391.

    CAS  Google Scholar 

  • Nagata, S. and Golstein, P. (1995). The fas death factor. Sci Dev 267, 1449–1456.

    CAS  Google Scholar 

  • Negron, J. F. and Lockshin, R. A. (2004). Activation of apoptosis and caspase-3 in zebrafish early gastrulae. Dev Dyn Dev 231, 161–170.

    Article  CAS  Google Scholar 

  • Okada, H. and Mak, T. W. (2004). Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer Dev 4, 592–603.

    Article  CAS  Google Scholar 

  • Pérez, C. (1910). Recherches histologiques sur la métamorphose des muscides (Calliphora erythrocephala Mg). Arch Zool Expér Gén 5e Série Dev 4, 1–274.

    Google Scholar 

  • Saunders, J. W., Jr. (1966). Death in embryonic systems. Sci Dev 154, 604–612.

    Google Scholar 

  • Sperandio, S., Poksay, K., de, B., Lafuente, I. M. J., Liu, B., Nasir, J., and Bredesen, D. E. (2004). Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ Dev 11, 1066–1075.

    Google Scholar 

  • Tata, J. R. (1966). Requirement for RNA and protein synthesis for induced regression of tadpole tail in organ culture. Dev Biol Dev 13, 77–94.

    Article  CAS  Google Scholar 

  • Terre, L. (1889). Contribution á l’étude de l’histolyse et de l’histogénèse du tissu musculaire chez l’abeille. C R Soc Biol (IIe Série) Dev 51, 896–898.

    Google Scholar 

  • Tolkovsky, A. M., Bampton, E. T. W., and Goemans, C. G. (2004). Cell death in neuronal development and maintenance. In: When Cells Die II, eds. Lockshin, R. A. and Zakeri, Z. Wiley-Liss, New York, pp. 175–200.

    Google Scholar 

  • Wiggleswoth, V. B. (1972). The Principles of Insect Physiology. Chapman & Hall, London.

    Google Scholar 

  • Xue, L., Fletcher, G. C., and Tolkovsky, A. M. (1999). Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci Dev 14, 180–198.

    Article  CAS  Google Scholar 

  • Xue, L., Fletcher, G. C., and Tolkovsky, A. M. (2001). Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr Biol Dev 11, 361–365.

    Article  CAS  Google Scholar 

  • Yonish-Rouach, E., Grunwald, D., Wilder, S., Kimchi, A., May, E., Lawrence, J.-J., May, P., and Oren, M. (1993). p53-Mediated cell death: relationship to cell cycle control. Mol Cell Biol Dev 13, 1415–1423.

    CAS  Google Scholar 

  • Zakeri, Z. and Lockshin, R. A. (2002). Cell death during development. J Immunol Methods Dev 265, 3–20.

    Article  CAS  Google Scholar 

  • Zakeri, Z. and Lockshin, R. A. (2004). Cell death: shaping an embryo. In: When Cells Die II, eds. Lockshin, R. A. and Zakeri, Z. Wiley-Liss, New York, pp. 27–58.

    Google Scholar 

  • Zakeri, Z., Bursch, W., Tenniswood, M., and Lockshin, R. A. (1995). Cell death. Programmed, apoptosis, necrosis, or other. Cell Death Differ Dev 2, 87–96.

    CAS  Google Scholar 

  • Zakeri, Z. F., Quaglino, D., Latham, T., and Lockshin, R. A. (1993). Delayed internucleosomal DNA fragmentation in programmed cell death. FASEB J Dev 7, 470–478.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Zakeri, Z., Lockshin, R.A. (2008). Cell Death: History and Future. In: Programmed Cell Death in Cancer Progression and Therapy. Advances in Experimental Medicine and Biology, vol 615. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6554-5_1

Download citation

Publish with us

Policies and ethics