Skip to main content

MOLECULAR HYDROGEN EVOLUTION: PHOTOCATALYTIC ACTIVITY OF MESOPOROUS TIO2-CONTAINING METAL COMPOSITES

  • Conference paper
Hydrogen Materials Science and Chemistry of Carbon Nanomaterials

Abstract

The photocatalytic reduction of metal cations (M = Ni2+, Co2+, Cu2+, Cd2+, Zn2+, Fe2+, Ag+, Pb2+) on the surface of mesoporous TiO2, synthesized by solgel technique, was found to cause formation of nanostructured metalsemiconductor composites TiO2/M.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Khairutdinov R.F. (1998) Chemistry of semiconductor nanoparticles, Russ. Chem. Rev. 67(2), 109–121.

    Article  Google Scholar 

  2. Wang Y., Herron N. (1991) Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects and Photophysical Properties, J. Phys. Chem. 95(2) 525–532.

    Article  CAS  Google Scholar 

  3. Nanoparticles and Nanostructured Films: Preparation, Characterization and Application, ed. by J. H. Fendler, Weinheim, N. Y., 1998.

    Google Scholar 

  4. Kryukov A.I., Kuchmii S.Ya., Pokhodenko V.D. (2000) Energetics of the electronic processes in semiconductor photocatalytic systems, Theoret. Experim. Chem. 36 (2): 69–86.

    Google Scholar 

  5. Soler-Illia G., Sanchez C., Lebeau B., Patarin J. (2002) Chemical Strategies To Desing Textured Materials: from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chem. Rev., 102(11), 4093–4138.

    Article  PubMed  Google Scholar 

  6. Serrano D.P., Galleja G., Sanz R., Pizzarro P. (2004) Preparation of bimodal micro-mesoporous TiO2 with tailored crystalline properties, Chem.Comm., (8), 1000–1001.

    Google Scholar 

  7. Sato S., Oimatsu S., Takanashi R., Sodesawa T., Nozaki F. (1997) Pore size regulation of TiO2 by use of a complex of titanium tetraisopropoxide and stearic acid, Chem.Comm., 2219–2220.

    Google Scholar 

  8. Yue Y., Gao Z. (2000) Synthesis of mesoporous TiO2 with crystalline framework, Chem. Comm., 1755–1756.

    Google Scholar 

  9. Stone Jr. V.F., Davis R.J. (1998) Synthesis, Characterization, and Photocatalytic Activity of Titania and Niobia Mesoporous Molecular Sieves, Chem. Mater., 10(5), 1468–1474.

    Article  CAS  Google Scholar 

  10. Kavan L., Rathouský J., Grätzel M., Shklover V., Zukal A. (2001) Mesoporous thin film TiO2 electrodes, Microporous Mesoporous Mater., 44–45(6), 653–659.

    Article  Google Scholar 

  11. Kolen’ko Y.V., Churagulov B.R., Kunst M. et al. (2004) Photocatalytic properties of titania powders prepared by hydrothermal method, Appl. Catal. B, 54(1), 51–58.

    CAS  Google Scholar 

  12. Energy Resources through Photochemistry and Catalysis, ed. by M. Grätzel, Academic Press, N. Y., 1983.

    Google Scholar 

  13. Hagfeldt A., Grätzel M. (1995) Light-Induced redox-Reactions in Nanocrystalline Systems, Chem. Rev. 95(1), 49–68.

    Article  CAS  Google Scholar 

  14. A. Fujishima, T. N. Rao, D. A. Tryk (2000) TiO2 Photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev. 1(1), 1–26.

    Article  CAS  Google Scholar 

  15. Serpone N., Lawless D., Khairutdinov R.F. (1995) Subnanosecond Relaxation Dynamics in TiO2 Colloidal Sols (Particle Sizes Rp = 1.0–13.4 nm). Relevance to Heterogeneous Photocatalysis, J. Phys. Chem. 99(45), 16655–16661.

    Article  CAS  Google Scholar 

  16. Jang H.D., Kim S.K., Kim S.J. (2001) Effect of Particle Size and Phase Composition of Titanium Dioxide Nanoparticles on the Photocatalytic Processes, J. Nanoparticle Res. 3(2–3), 141–147.

    Article  CAS  Google Scholar 

  17. Rajeshwar K., Chenthamarakshan C.R., Goeringer S., Djukic M. (2001), Titania-based heterogeneous photocatalysis. Materials, mechanistic issues, and implications for environmental remediation, Pure Appl. Chem. 73(12), 1849–1860.

    CAS  Google Scholar 

  18. Vorontsov A.V., Stoyanova I.V., Kozlov D.V. et al. (2000) Kinetics of the Photocatalytic Oxidation of Gaseous Acetone over Platinized Titanium Dioxide, J. Catal. 189(2), 360–369.

    Article  CAS  Google Scholar 

  19. Kennedy III J.C., Datye A.K.J. (1998) Photothermal Heterogeneous Oxidation of Ethanol over Pt/TiO2, J. Catal. 179(2), 375–389.

    Article  CAS  Google Scholar 

  20. Gan S., Liang Y., Baer D.R. et al. (2001) Effect of Platinum Nanocluster Size and Titania Surface Structure upon CO Surface Chemistry on Platinum-Supported TiO2 (110), J. Phys. Chem. B. 105(12), 2412–2416.

    Article  CAS  Google Scholar 

  21. Driessen M.D., Grassian V.H. (1998) Photooxidation of Trichloroethylene on Pt/TiO2, J. Phys. Chem. B. 102(8), 1418–1423.

    Article  CAS  Google Scholar 

  22. Falconer J.L., Magrini-Bair K.A. (1998) Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2, J. Catal. 179, 171–178.

    Article  CAS  Google Scholar 

  23. Ohtani B., Iwai K., Nishimoto S., Sato T. (1993) Effect of Surface Adsorptions of Alifatic Alcohols and Silver Ions on the Photocatalytic Activity of TiO2 Suspended in Aqueous Solutions, J. Phys. Chem., 97(4), 920–926.

    Article  CAS  Google Scholar 

  24. Baker R.T.K., Kim K.S., Emerson A.B., Dumesic J.A. (1986) A Study of the Platinum–Titanium Dioxide System for the Hydrogenation of Graphite: Ramifications of Strong Metal-Support Interactions, J. Phys. Chem. 90(5), 860–866.

    Article  CAS  Google Scholar 

  25. Subramanian V., Wolf E., Kamat P.V. (2001) Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films ?, J. Phys. Chem. B. 105(46), 11439–11446.

    Article  CAS  Google Scholar 

  26. Einaga H., Futamura S., Ibusuki T. (2001) Improvement of Catalyst Durability in Benzene Photooxidation by Rhodium Deposition on TiO2, Chem. Lett. 582–583.

    Google Scholar 

  27. Goren Z., Willner I., Nelson A.J., Frank A.J. (1990) Selective Photoreduction of CO2/HCO3- to Formate by Aqueous Suspensions and Colloids of Pd-TiO2, J. Phys. Chem. 94(9), 3784–3790.

    Article  CAS  Google Scholar 

  28. Ohtani B., Iwai K., Nishimoto S., Sato S. (1997) Role of Platinum Deposits on Titanium(IV) Oxide particles: Stroctural and Kinetic Analyses of Photocatalytic Reaction in Aqueous Alcohol and Amino Acid Solutions, J. Phys. Chem. B. 101(17), 3349–3359.

    Article  CAS  Google Scholar 

  29. Wen C., Ishikawa K., Kishima M., Yamada K. (2000) Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films, Solar Energy Mater. & Solar Cells. 61, 339–351.

    Article  CAS  Google Scholar 

  30. Sclafani A., Mozzanega M.-N., Herrmann J.-M. (1997) Influence of Silver Deposits on the Photocatalytic Activity of Titania, J. Catal. 168(2), 117–120.

    Article  CAS  Google Scholar 

  31. Dawson A., Kamat P.V. (2001) Semiconductor-metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2 (TiO2/Gold) Nanoparticles, J. Phys. Chem. B. 105(5), 960–966.

    Article  CAS  Google Scholar 

  32. Kamat P.V., Flumiani M., Dawson A. (2002) Metal-metal and metal-semiconductor composite nanoclusters, Coll. Surf. A: Physicochem. Eng. Asp. 202, 269–279.

    Article  CAS  Google Scholar 

  33. Fernandez A., Caballero A., Gonzalez-Elipe A.R., Herrmann J.-M., Dexpert H., Villain F. (1995) In Situ EXASFS Study od the Photocatalytic Reduction and Deposition of Gold on Colloidal Titania, J. Phys. Chem. 99(10), 3303–3309.

    Article  CAS  Google Scholar 

  34. Moelwyn-Hughes E.A. Physical chemistry, Pergamon Press, London-N.Y.-Paris, 1961.

    Google Scholar 

  35. Yanagisawa K., Ovenstone J. (1999) Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature, J. Phys. Chem B. 103(37), 7781–7787.

    Article  CAS  Google Scholar 

  36. Wang H., He J., Boschloo G. et al. (2001) Electrochemical Investigation of Traps in a Nanostructured TiO2 Film, J. Phys. Chem. B. 105(13), 2529–2533.

    Article  CAS  Google Scholar 

  37. Boschloo G., Fitzmaurice M. (1999) Spectroelectrochemical Investigation of Surface States in Nanostructured TiO2 Electrodes, J. Phys. Chem. B. 103(12), 2228–2231.

    Article  CAS  Google Scholar 

  38. Boschloo G., Fitzmaurice M. (1999) Electron Accumulation in Nanostructured TiO2 (Anatase) Electrodes, J. Phys. Chem. B. 103(37), 7860–7868.

    Article  CAS  Google Scholar 

  39. Antropov L.I., Theoretical electrochemistry (in russian), Vysshaya shkola, Moscow, 1965.

    Google Scholar 

  40. M. Gutierrez, A. Henglein, Ber. Bunsenges. Phys. Chem. 87 (1983) 474.

    CAS  Google Scholar 

  41. Chen L.X., Rajh T., Wang Z., Thurnauer M.C. (1997) XAFS Studies of Surface Structures of TiO2 Nanoparticles and Photocatalytic Reduction of Metal Ions, J. Phys. Chem. B.. 101(50), 10688–10697.

    Article  CAS  Google Scholar 

  42. Kryukov A.I., Kuchmii S.Y., Pokhodenko V.D. (1997) Nanostructured composite photocatalysts based on polycrystalline cadmium sulfide, Theoret. Experim. Chem. 33(5), 306–321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

KORZHAK, A. et al. (2007). MOLECULAR HYDROGEN EVOLUTION: PHOTOCATALYTIC ACTIVITY OF MESOPOROUS TIO2-CONTAINING METAL COMPOSITES. In: Veziroglu, T.N., et al. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Security through Science Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5514-0_75

Download citation

Publish with us

Policies and ethics