Abstract
We give a relatively easy proof of the Erdős-Kac theorem via computing moments. We show how this proof extends naturally in a sieve theory context, and how it leads to several related results in the literature.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alladi, K. (1987) An Erdős-Kac theorem for integers without large prime factors, Acta Arith. 49, 81–105.
Billingsley, P. (1973) Prime numbers and Brownian motion, Amer. Math. Monthly 80, 1099–1115.
David, C. and Pappalardi, F. (1999) Average Frobenius distributions of elliptic curves, Internal. Math. Res. Notices 1999, 165–183.
Elliott, P. D. T. A. (1979) Probabilistic number theory. Vol. I. and II, Vol. 239 and 240 of Grundlehren Math. Wiss., New York-Berlin, Springer.
Elliott, P. D. T. A. and Sárkőzy, A. (1997) The distribution of the number of prime divisors of numbers of form ab+ 1, In New trends in probability and statistics. Vol. 4, Palanga, 1996, pp. 313–321, VSP, Utrecht.
Erdős, P. (1935) On the normal order of prime factors of p - 1 and some related problems concerning Euler’s ψ-functions, Quart. J. Math.(Oxford) 6, 205–213.
Erdős, P. and Kac, M. (1940) The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math 62, 738–742.
Erdős, P., Maier, H., and Sárkőzy, A. (1987) On the distribution of the number of prime factors of sums a + b, Trans. Amer. Math. Soc 302, 269–280.
Erdős, P. and Pomerance, C. (1985) On the normal number of prime factors of ψ(n), Rocky Mountain J. Math 15, 343–352.
Erdős, P. and Wintner, A. (1939) Additive arithmetical functions and statistical independence, Amer. J. Math. 61, 713–721.
Halberstam, H. (1955) On the distribution of additive number theoretic functions. I, J. London Math. Soc. 30, 43–53.
Halberstam, H. (1956) On the distribution of additive number theoretic functions. III, J. London Math. Soc. 31, 15–27.
Hardy, G. H. and Ramanujan, S. (1917) The normal number of prime factors of a number n, Quar. J. Pure. Appl. Math 48, 76–97.
Hensley, D. (1994) The number of steps in the Euclidean algorithm, J. Number Theory 49, 142–182.
Hildebrand, A. (1987) On the number of prime factors of integers without large prime divisors, J. Number Theory 25, 81–106.
Kac, M. (1959) Statistical independence in probability, analysis and number theory, Vol. 12 of Carus Math. Monogr., New York, Math. Assoc. America.
Khan, R. (2006) On the distribution of normal numbers, preprint.
Kubilius, J. (1964) Probabilistic methods in the theory of numbers, Vol. 11 of Transl. Math. Monogr., Providence, RI, Amer. Math. Soc.
Kuo, W. and Liu, Y.-R. (2006) Erdős—Pomerance’s conjecture on the Carlitz module, to appear.
Li, S. and Pomerance, C. (2003) On generalizing Artin’s conjecture on primitive roots to composite moduli, J. Reine Angew. Math. 556, 205–224.
Liu, Y.-R. (2004) A generalization of the Erdős-Kac theorem and its applications, Canad. Math. Bull. 47, 589–606.
Liu, Y.-R. (2005a) A prime analogue of Erdős-Pomerance’s conjecture for elliptic curves, Comment. Math. Helv. 80, 755–769.
Liu, Y.-R. (2005b) Prime divisors of the number of rational points on elliptic curves with complex multiplication, Bull. London Math. Soc 37, 658–664.
Mauduit, C. and Sárkőzy, A. (1996) On the arithmetic structure of sets characterized by sum of digits properties, J. Number Theory 61, 25–38.
Montgomery, H. and Soundararajan, K. (2004) Primes in short intervals, Comm. Math. Phys. 252, 589–617.
Murty, M. R. and Saidak, F. (2004) Non-abelian generalizations of the Erdős-Kac theorem, Canad. J. Math 56, 356–372.
Murty, V. K. and Murty, M. R. (1984a) An analogue of the Erdős-Kac theorem for Fourier coefficients of modular forms, Indian J. Pure Appl. Math. 15, 1090–1101.
Murty, V. K. and Murty, M. R. (1984b) Prime divisors of Fourier coefficients of modular forms, Duke Math. J. 51, 57–76.
Sathe, L. G. (1953) On a problem of Hardy on the distribution of integers having a given number of prime factors. II., J. Indian Math. Soc. (N.S.) 17, 83–141.
Selberg, A. (1954) Note on a paper by L. G. Sathe, J. Indian Math. Soc. (N.S.) 18, 83–87.
Shapiro, H. (1956) Distribution functions of additive arithmetic functions, Proc. Nat. Acad. Sci. USA 42, 426–430.
Tenenbaum, G. (1995) Introduction to analytic and probabilistic number theory, Vol. 46 of Cambridge Stud. Adv. Math., Cambridge, Cambridge University Press.
Turán, P. (1934) On a theorem of Hardy and Ramanujan, J. London Math. Soc. 9, 274–276.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer
About this paper
Cite this paper
Granville, A., Soundararajan, K. (2007). SIEVING AND THE ERDŐS–KAC THEOREM. In: Granville, A., Rudnick, Z. (eds) Equidistribution in Number Theory, An Introduction. NATO Science Series, vol 237. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5404-4_2
Download citation
DOI: https://doi.org/10.1007/978-1-4020-5404-4_2
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-5402-0
Online ISBN: 978-1-4020-5404-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)