Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 237))

Abstract

We give a relatively easy proof of the Erdős-Kac theorem via computing moments. We show how this proof extends naturally in a sieve theory context, and how it leads to several related results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alladi, K. (1987) An Erdős-Kac theorem for integers without large prime factors, Acta Arith. 49, 81–105.

    MATH  MathSciNet  Google Scholar 

  • Billingsley, P. (1973) Prime numbers and Brownian motion, Amer. Math. Monthly 80, 1099–1115.

    Article  MATH  MathSciNet  Google Scholar 

  • David, C. and Pappalardi, F. (1999) Average Frobenius distributions of elliptic curves, Internal. Math. Res. Notices 1999, 165–183.

    Article  MATH  MathSciNet  Google Scholar 

  • Elliott, P. D. T. A. (1979) Probabilistic number theory. Vol. I. and II, Vol. 239 and 240 of Grundlehren Math. Wiss., New York-Berlin, Springer.

    Google Scholar 

  • Elliott, P. D. T. A. and Sárkőzy, A. (1997) The distribution of the number of prime divisors of numbers of form ab+ 1, In New trends in probability and statistics. Vol. 4, Palanga, 1996, pp. 313–321, VSP, Utrecht.

    Google Scholar 

  • Erdős, P. (1935) On the normal order of prime factors of p - 1 and some related problems concerning Euler’s ψ-functions, Quart. J. Math.(Oxford) 6, 205–213.

    Article  Google Scholar 

  • Erdős, P. and Kac, M. (1940) The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math 62, 738–742.

    Article  MathSciNet  Google Scholar 

  • Erdős, P., Maier, H., and Sárkőzy, A. (1987) On the distribution of the number of prime factors of sums a + b, Trans. Amer. Math. Soc 302, 269–280.

    Article  MathSciNet  Google Scholar 

  • Erdős, P. and Pomerance, C. (1985) On the normal number of prime factors of ψ(n), Rocky Mountain J. Math 15, 343–352.

    Article  MathSciNet  Google Scholar 

  • Erdős, P. and Wintner, A. (1939) Additive arithmetical functions and statistical independence, Amer. J. Math. 61, 713–721.

    Article  MathSciNet  Google Scholar 

  • Halberstam, H. (1955) On the distribution of additive number theoretic functions. I, J. London Math. Soc. 30, 43–53.

    Article  MATH  MathSciNet  Google Scholar 

  • Halberstam, H. (1956) On the distribution of additive number theoretic functions. III, J. London Math. Soc. 31, 15–27.

    Google Scholar 

  • Hardy, G. H. and Ramanujan, S. (1917) The normal number of prime factors of a number n, Quar. J. Pure. Appl. Math 48, 76–97.

    MATH  Google Scholar 

  • Hensley, D. (1994) The number of steps in the Euclidean algorithm, J. Number Theory 49, 142–182.

    Article  MATH  MathSciNet  Google Scholar 

  • Hildebrand, A. (1987) On the number of prime factors of integers without large prime divisors, J. Number Theory 25, 81–106.

    Article  MATH  MathSciNet  Google Scholar 

  • Kac, M. (1959) Statistical independence in probability, analysis and number theory, Vol. 12 of Carus Math. Monogr., New York, Math. Assoc. America.

    Google Scholar 

  • Khan, R. (2006) On the distribution of normal numbers, preprint.

    Google Scholar 

  • Kubilius, J. (1964) Probabilistic methods in the theory of numbers, Vol. 11 of Transl. Math. Monogr., Providence, RI, Amer. Math. Soc.

    Google Scholar 

  • Kuo, W. and Liu, Y.-R. (2006) Erdős—Pomerance’s conjecture on the Carlitz module, to appear.

    Google Scholar 

  • Li, S. and Pomerance, C. (2003) On generalizing Artin’s conjecture on primitive roots to composite moduli, J. Reine Angew. Math. 556, 205–224.

    MATH  MathSciNet  Google Scholar 

  • Liu, Y.-R. (2004) A generalization of the Erdős-Kac theorem and its applications, Canad. Math. Bull. 47, 589–606.

    MATH  MathSciNet  Google Scholar 

  • Liu, Y.-R. (2005a) A prime analogue of Erdős-Pomerance’s conjecture for elliptic curves, Comment. Math. Helv. 80, 755–769.

    Article  MATH  Google Scholar 

  • Liu, Y.-R. (2005b) Prime divisors of the number of rational points on elliptic curves with complex multiplication, Bull. London Math. Soc 37, 658–664.

    Article  MATH  Google Scholar 

  • Mauduit, C. and Sárkőzy, A. (1996) On the arithmetic structure of sets characterized by sum of digits properties, J. Number Theory 61, 25–38.

    Article  MATH  MathSciNet  Google Scholar 

  • Montgomery, H. and Soundararajan, K. (2004) Primes in short intervals, Comm. Math. Phys. 252, 589–617.

    Article  MATH  MathSciNet  Google Scholar 

  • Murty, M. R. and Saidak, F. (2004) Non-abelian generalizations of the Erdős-Kac theorem, Canad. J. Math 56, 356–372.

    MATH  MathSciNet  Google Scholar 

  • Murty, V. K. and Murty, M. R. (1984a) An analogue of the Erdős-Kac theorem for Fourier coefficients of modular forms, Indian J. Pure Appl. Math. 15, 1090–1101.

    MATH  MathSciNet  Google Scholar 

  • Murty, V. K. and Murty, M. R. (1984b) Prime divisors of Fourier coefficients of modular forms, Duke Math. J. 51, 57–76.

    Article  MATH  MathSciNet  Google Scholar 

  • Sathe, L. G. (1953) On a problem of Hardy on the distribution of integers having a given number of prime factors. II., J. Indian Math. Soc. (N.S.) 17, 83–141.

    MathSciNet  MATH  Google Scholar 

  • Selberg, A. (1954) Note on a paper by L. G. Sathe, J. Indian Math. Soc. (N.S.) 18, 83–87.

    MathSciNet  MATH  Google Scholar 

  • Shapiro, H. (1956) Distribution functions of additive arithmetic functions, Proc. Nat. Acad. Sci. USA 42, 426–430.

    Article  MATH  Google Scholar 

  • Tenenbaum, G. (1995) Introduction to analytic and probabilistic number theory, Vol. 46 of Cambridge Stud. Adv. Math., Cambridge, Cambridge University Press.

    Google Scholar 

  • Turán, P. (1934) On a theorem of Hardy and Ramanujan, J. London Math. Soc. 9, 274–276.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Granville, A., Soundararajan, K. (2007). SIEVING AND THE ERDŐS–KAC THEOREM. In: Granville, A., Rudnick, Z. (eds) Equidistribution in Number Theory, An Introduction. NATO Science Series, vol 237. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5404-4_2

Download citation

Publish with us

Policies and ethics