Skip to main content

CHEMICAL ENERGY CONVERSION TECHNOLOGIES FOR EFFICIENT ENERGY USE

  • Conference paper
Thermal Energy Storage for Sustainable Energy Consumption

Part of the book series: NATO Science Series ((NAII,volume 234))

Abstract

Energy conversion technologies using chemical reaction are introduced. Thermal energy conversion by chemical heat pumps and a hydrogen production system is shown mainly as efficient energy utilization technology utilizing chemical reaction ability. Chemical reaction would be useful for thermal energy management, because heat density of chemical changes is relatively higher than one of physical changes, which are used in conventional conversion system. Then, reversible chemical reaction is expected to have potential for thermal energy conversion, storage and utilization process in the next generation. The know-how of development of energy conversion system utilizing reversible chemical reactions is explained using chemical reaction equilibrium analysis. Chemical heat pump for thermal energy storage and conversion, and hydrogen production utilizing separation process are reviewed as practical example. Possibility of chemical energy conversion methodology would be understood from this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wettermark, G., et al., 1979. Storage of heat–A survey of efforts and possibilities, Swedish Council for Building Research.

    Google Scholar 

  2. Taube, M., et al., 1980. Opportunities and limitations for the use of ammoniated salts as a carrier for thermochemical energy storage, Int. Seminar on Thermochemical Energy Storage, Stockholm, pp. 349–369.

    Google Scholar 

  3. DOE Report, 1981. Chemical heat pump cost-effectiveness Evaluation, BNL-51484, DE82-008858.

    Google Scholar 

  4. Ervin, G. 1977. Solar heat storage using chemical reactions, J. Solid State Chem., 22, 51–61.

    Article  Google Scholar 

  5. Kanzawa, A., Y. Arai, 1981. Thermal energy storage by the chemical reaction (Augmentation of heat transfer and thermal decomposition in the CaO/Ca(OH)2 powder), Solar Energy, 289–294.

    Google Scholar 

  6. Prevost, M., and R. Bugarel, 1981. Theoretical and technical aspects of a chemical heat pump: Secondary alcohol–ketone–hydrogen system, Proc. 2nd World Cong. Chem. Eng., 2, 585–590.

    Google Scholar 

  7. Kato, Y., and H. Kameyama, 1986. Study of Catalyst-Assisted Chemical Heat Pump with Reaction Couple of Acetone Hydrogenation and 2-Propnanol Dehydrogenation, Proc. of World Congress III of Chemical Engineering, I, Tokyo, pp. 676–679.

    Google Scholar 

  8. Shinji, O., et al., 1982. The dehydrogenation of cyclohexane by the use of a porous-glass reactor, Bull. Chem. Soc., Japan, 55, 2760–64.

    Article  Google Scholar 

  9. Hanneman, R.E., et al., 1974. Closed loop chemical system for energy transmission, conversion and storage, Proc. Intersoc. Energy Conversion Eng. Conf., pp. 435–441.

    Google Scholar 

  10. The New Energy and Industrial Technology Development Organization (NEDO), 1993. Final Report for the Project of Super-Heat Pump and Energy Integrated System, September 1993 (in Japanese).

    Google Scholar 

  11. Ogura, H., et al., 1991. Thermal conductivity analysis of packed bed reactor with heat transfer fin for Ca(OH)2/CaO chemical heat pump, Kagaku-kogaku Ronbunsyu, 17 (9), 916–923.

    MathSciNet  Google Scholar 

  12. Kato, Y., J. Nakahata, and Y. Yoshizawa, 1999. Durability characteristics of the hydration of magnesium oxide under repetitive reaction, J. Mater. Sci., 34, 475–480.

    Article  Google Scholar 

  13. Kato, Y., D. Saku, N. Harada, and Y. Yoshizawa, 1997. Utilization of high temperature heat using a calcium oxide/lead oxide/carbon dioxide chemical heat pump, J. Chem. Eng. Japan, 30 (10), 1013–1019.

    Article  Google Scholar 

  14. Crozat, G., et al., 1988. Systemes de gestion de L’energie thermique bases sur des reaction solid-gaz, Pompes Chaleur Chimiques de Hautes Perfomances, 2 (9), 310–319.

    Google Scholar 

  15. Tamainot-Telto, Z., and R.E. Critoph, 2001. Monolithic carbon for sorption refrigeration and heat pump applications, Appl. Thermal Eng., 21 (6), 37–52.

    Article  Google Scholar 

  16. Fujioka, K., et al., 1998. Measurement of effective thermal conductivity of CaCl2 reactor beds used for driving chemical heat pumps, J. Chem. Eng. Japan, 31, 266–272.

    Article  Google Scholar 

  17. Kato, Y., and C. L. Pritchard, 2000. Energy performance analysis of isobutene/water/tert-butanol chemical heat pump, Trans. IChemE, 78 (2), 184–191.

    Article  Google Scholar 

  18. Selvidge, M., and I.N. Miaoulis, 1990. evaluation of reversible hydration reactions for use in thermal energy storage,. Solar Energy, 44 (8), 173–178.

    Article  Google Scholar 

  19. Alefeld, G., P. Maier-Laxhuber, and M. Rothmeyer, 1981. Thermochemical heat storage and heat transformation with zeolites as adsorbents, In Proceedings of the IEA Conference on New Energy Conservation Technologies and their Commercialization, 6–10 April 1981, Vol. 1, J.P. Millhone & E.H. Willis, Springer Verlag, Berlin, pp. 796–819.

    Google Scholar 

  20. Close, D.J., and T.L. Pryor, 1976. The behavior of adsorbent energy storage beds. Solar Energy, 18, 287–292.

    Article  Google Scholar 

  21. Close, D.J., and R.V. Dunkle, 1977. Use of adsorbent beds for energy storage in drying of heating systems, Solar Energy, 19, 233–238.

    Article  Google Scholar 

  22. Pryor, T.L., and D.J. Close, 1978. Measurements of the behavior of adsorbent energy storage beds, Solar Energy, 20, 151–155.

    Article  Google Scholar 

  23. Gopal, R., B.R. Hollebone, C.H. Langford and R.A. Shigeishi, 1982. The rates of solar energy storage and retrieval in a zeolite water system, Solar Energy, 28, 421–424.

    Article  Google Scholar 

  24. Kato, Y., 2001. Heat Storage Technologies, Vol. 2, Latent and Chemical Heat Storages, edited by N. Hasatani and A. Kanzawa (Shinzan-sya, Tokyo, 2001), pp. 135–153 (in Japanese).

    Google Scholar 

  25. Kato, Y., 2000. Low exergy reactor for decentralized energy utilization, Progress in Nuclear Energy, 37 (1–4), 405–410.

    Article  Google Scholar 

  26. Kato, Y., Y. Sasaki, and Y. Yoshizawa, 2005. Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system, Energy, 30 (11–12), 2144–2155.

    Article  Google Scholar 

  27. Kato, Y., D. Saku, N. Harada, and Y. Yoshizawa, 1997. Utilization of high temperature heat using a calcium oxide/lead oxide/carbon dioxide chemical heat pump, J. Chem. Eng. Japan, 30 (10), 1013–1019.

    Article  Google Scholar 

  28. Kato, Y., C.L. Pritchard, 2000. Energy performance analysis of isobutene/water/tert-butanol chemical heat pump, Trans IChemE, 78 (Part A), 184–191.

    Article  Google Scholar 

  29. Kato, Y., K. Ando, and, Y. Yoshizawa, 2003. Study on a regenerative fuel reformer for a zero-emission vehicle system, J. Chem. Eng. Japan, 36 (11), 860–866.

    Article  Google Scholar 

  30. Williams, R., 1933. Hydrogen Production, U.S. Patent 1,938,202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Kato, Y. (2007). CHEMICAL ENERGY CONVERSION TECHNOLOGIES FOR EFFICIENT ENERGY USE. In: Paksoy, H.Ö. (eds) Thermal Energy Storage for Sustainable Energy Consumption. NATO Science Series, vol 234. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5290-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5290-3_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5288-0

  • Online ISBN: 978-1-4020-5290-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics