Skip to main content

BENDING PERFORMANCE OF HIGH STRENGTH STEEL FIBRE REINFORCED CONCRETE

Static and fatigue loading conditions

  • Conference paper
Measuring, Monitoring and Modeling Concrete Properties

Abstract

Four point bending tests on 125/125/1000 mm beams at a 750 mm span were performed under both static and fatigue loading conditions. The results of the static tests were used to determine the chosen fatigue sinusoidal loading at two load levels. Three different concrete mixtures were tested: one ultra high strength mixture and two high strength ones that had small differences in their matrix composition and fibre type and content. The static peak load depends on the amount of fibres in the mixture. The scatter in the fatigue result can be reduced by the use of a good workable and flow-able mixture in the fresh state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Thibaux, Z. Hajar, A. Simon, and S. Chanut., Construction of an ultra-high-performance fibre-reinforced concrete thin-shell structure over the Millau viaduct toll gates, in: Proc. of 6th Int. RILEM Symposium on Fibre Reinforced Concrete (FRC), BEFIB (RILEM, 2004), pp. 1183–1192.

    Google Scholar 

  2. E.S. Lappa, C.R Braam. and J.C. Walraven, Static and fatigue bending tests of UHPC, in: Proc. of the Int. Symposium on Ultra High Performance Concrete (Kassel University Press GmbH, 2004) pp. 449–459.

    Google Scholar 

  3. S. Grünewald, Performance based design of self-compacting, fibre reinforced concrete, PhD Thesis, Delft University Press, 2004.

    Google Scholar 

  4. E.S. Lappa, C. van der Veen and J.C. Walraven, Self-compacting, high strength fibre reinforced mortar for pre-cast sheet piles”, In proc. of, 3rd Int. Symposium on Self Compacting Concrete, Reykjavik, (RILEM 2003), pp. 732–740.

    Google Scholar 

  5. I. Markovic, J.C. Walraven and J.G.M. van Mier, Development and utilization of high performance hybrid-fibre concrete, in: proc. of 5th Int. PhD Symposium in civ. eng., Delft (Balkema publishers, 2004), pp. 1039–1047.

    Google Scholar 

  6. K.V. Subramanian, E. O’Neil, J.S. Popovics and S.P. Shah, Crack propagation in flexural fatigue of concrete, J. of eng. Mechanics, Sept. 2000, pp. 891–898.

    Google Scholar 

  7. P. Suthiwarapirak, T. Matsumoto and T. Kanda, Multiple cracking and fiber bridging characteristics of engineered cementitious composites under fatigue flexure, J. of materials in civ. Engineering, ASCE, Sept/Oct 2004, pp. 433–443.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Lappa, E., Braam, C., Walraven, J. (2006). BENDING PERFORMANCE OF HIGH STRENGTH STEEL FIBRE REINFORCED CONCRETE. In: KONSTA-GDOUTOS, M.S. (eds) Measuring, Monitoring and Modeling Concrete Properties. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5104-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-5104-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5103-6

  • Online ISBN: 978-1-4020-5104-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics