Skip to main content

The Tomato Yellow Leaf Curl Virus Genome and Function of its Proteins

  • Chapter
Tomato Yellow Leaf Curl Virus Disease

In the following, an overview on the genome organisation of tomato (yellow) leaf curl viruses will be presented. Also, a brief description of the biological functions of the viral proteins will be given. The nomenclature including acronyms for some TYLCV species was changed since their first description, in the following the ICTV-approved designations given in Stanley et al. (2005) are used. Most data referred to are derived from studies with Tomato yellow leaf curl virus (TYLCV) [GenBank acc. no. X15656] (Navot et al., 1991), Tomato yellow leaf curl Sardinia virus (TYLCSV) [X61153] (Kheyr-Pour et al., 1991), Tomato leaf curl virus (ToLCV) [S53251] (Dry et al., 1993), and Tomato leaf curl New Delhi virus (ToLCNDV) [U15015, U15017] (Padidam et al., 1995), a bipartite TYLCV species.

Tomato (yellow) leaf curl viruses belong to the genus Begomovirus within the family Geminiviridae. Most begomovirus species have a bipartite genome of two circular single-stranded (ss)DNA molecules, DNA-A (2.6–2.8 kbases) and DNA-B (2.5–2.8 kbases). Begomoviruses are transmitted by the whitefly Bemisia tabaci in a circulative and persistent manner. TYLCV and TYLCSV were the first begomoviruses proven to possess a single genomic DNA. Consequently, essential viral functions, otherwise encoded by DNA-B, have to be provided by proteins encoded by the single DNA of TYLCV, TYLCSV, ToLCV, and all other true monopartite tomato (yellow) leaf curl viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akbar Behjatnia, S. A., Dry, I. B., & Ali Rezaian, M. (1998). Identification of the replication-associated protein binding domain within the intergenic region of tomato leaf curl geminivirus. Nucleic Acids Res. 26, 925–931.

    CAS  PubMed  Google Scholar 

  • Argüello-Astorga, G. R., Guevara-Gonzalez, R. G., Herrera-Estrella, L. R., & Rivera-Bustamante, R. F. (1994). Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203, 90–100.

    PubMed  Google Scholar 

  • Argüello-Astorga, G. R. & Ruiz-Medrano, R. (2001). An iteron-related domain is associated to Motif 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid-base pairs by a comparative approach. Arch. Virol. 146, 1465–1485.

    PubMed  Google Scholar 

  • Bendahmane, M. (1994). Biologie Moléculaire des Virus TYLCV et WDV. Centre d’Orsay: Université Paris XI.

    Google Scholar 

  • Bisaro, D. M. (2006). Silencing suppression by geminivirus proteins. Virology 344, 158–168.

    CAS  PubMed  Google Scholar 

  • Böttcher, B., Unseld, S., Ceulemans, H., Russell, R. B., & Jeske, H. (2004). Geminate structures of African cassava mosaic virus. J. Virol. 78, 6758–6765.

    PubMed  Google Scholar 

  • Briddon, R. W. & Stanley, J. (2006). Subviral agents associated with plant single-stranded DNA viruses. Virology 344, 198–210.

    CAS  PubMed  Google Scholar 

  • Briddon, R. W., Pinner, M. S., Stanley, J., & Markham, P. G. (1990). Geminivirus coat protein gene replacement alters insect specificity. Virology 177, 85–94.

    CAS  PubMed  Google Scholar 

  • Briddon, R. W., Mansoor, S., Bedford, I. D., Pinner, M. S., Saunders, K., Stanley, J., Zafar, Y., Malik, K. A., & Markham, P. G. (2001). Identification of DNA components required for induction of cotton leaf curl disease. Virology 285, 234–243.

    CAS  PubMed  Google Scholar 

  • Briddon, R. W., Bull, S. E., Amin, I., Mansoor, S., Bedford, I. D., Rishi, N., Siwatch, S. S., Zafar, Y., Abdel-Salam, A. M., & Markham, P. G. (2004). Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA beta complexes. Virology 324, 462–474.

    CAS  PubMed  Google Scholar 

  • Campos-Olivas, R., Louis, J. M., Clérot, D., Gronenborn, B., & Gronenborn, A. M. (2002). The structure of a replication initiator unites diverse aspects of nucleic acid metabolism. Proc. Natl. Acad. Sci. USA 99, 10310–10315.

    CAS  PubMed  Google Scholar 

  • Castillo, A. G., Collinet, D., Deret, S., Kashoggi, A., & Bejarano, E. R. (2003). Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology 312, 381–394.

    CAS  PubMed  Google Scholar 

  • Castillo, A. G., Kong, L. J., Hanley-Bowdoin, L., & Bejarano, E. R. (2004). Interaction between a geminivirus replication protein and the plant sumoylation system. J. Virol. 78, 2758–2769.

    CAS  PubMed  Google Scholar 

  • Chatterji, A., Padidam, M., Beachy, R. N., & Fauquet, C. M. (1999). Identification of replication specificity determinants in two strains of tomato leaf curl virus from New Delhi. J. Virol. 73, 5481–5489.

    CAS  PubMed  Google Scholar 

  • Chatterji, A., Chatterji, U., Beachy, R. N., & Fauquet, C. M. (2000). Sequence parameters that determine specificity of binding of the replication-associated protein to its cognate site in two strains of tomato leaf curl virus-New Delhi. Virology 273, 341–350.

    CAS  PubMed  Google Scholar 

  • Chellappan, P., Vanitharani, R., & Fauquet, C. M. (2004). Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J. Virol. 78, 7465–7477.

    CAS  PubMed  Google Scholar 

  • Chellappan, P., Vanitharani, R., & Fauquet, C. M. (2005). MicroRNA-binding viral protein interferes with Arabidopsis development. Proc. Natl. Acad. Sci. USA 102, 10381–10386.

    CAS  PubMed  Google Scholar 

  • Choi, I. R. & Stenger, D. C. (1995). Strain-specific determinants of beet curly top geminivirus DNA replication. Virology 206, 904–912.

    CAS  PubMed  Google Scholar 

  • Clérot, D. & Bernardi, F. (2006). DNA helicase activity is associated with the replication initiator protein Rep of tomato yellow leaf curl geminivirus. J. Virol. 80, 11322–11330.

    PubMed  Google Scholar 

  • Cohen, S. & Harpaz, I. (1964). Periodic rather than continual acquisition of new tomato virus by its vector, the tobacco whitefly (Bemisia tabaci Gennadius). Entomol. Exp. Appl. 7, 155–166.

    Google Scholar 

  • Cohen, S. & Nitzany, F. E. (1966). Transmission and host range of the tomato yellow leaf curl virus. Phytopathology 56, 1127–1131.

    Google Scholar 

  • Cui, X., Li, G., Wang, D., Hu, D., & Zhou, X. (2005). A Begomovirus DNAbeta-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J. Virol. 79, 10764–10775.

    CAS  PubMed  Google Scholar 

  • Czosnek, H., Ber, R., Antignus, Y., Cohen, S., Navot, N., & Zamir, D. (1988). Isolation of Tomato Yellow Leaf Curl Virus, a Geminivirus. Phytopathology 78, 508–512.

    Google Scholar 

  • Desbiez, C., David, C., Mettouchi, A., Laufs, J., & Gronenborn, B. (1995). Rep protein of tomato yellow leaf curl geminivirus has an ATPase activity required for viral DNA replication. Proc. Natl. Acad. Sci. USA 92, 5640–5644.

    CAS  PubMed  Google Scholar 

  • Dong, X., van Wezel, R., Stanley, J., & Hong, Y. (2003). Functional characterization of the nuclear localization signal for a suppressor of posttranscriptional gene silencing. J. Virol. 77, 7026–7033.

    CAS  PubMed  Google Scholar 

  • Dry, I. B., Krake, L. R., Rigden, J. E., & Rezaian, M. A. (1997). A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc. Natl. Acad. Sci. USA 94, 7088–7093.

    CAS  PubMed  Google Scholar 

  • Dry, I. B., Rigden, J. E., Krake, L. R., Mullineaux, P. M., & Rezaian, M. A. (1993). Nucleotide sequence and genome organization of tomato leaf curl geminivirus. J. Gen. Virol. 74, 147–151.

    CAS  PubMed  Google Scholar 

  • Dyda, F. & Hickman, A. B. (2003). A mob of reps. Structure 11, 1310–1311.

    CAS  PubMed  Google Scholar 

  • Eagle, P. A., Orozco, B. M., & Hanley-Bowdoin, L. (1994). A DNA sequence required for geminivirus replication also mediates transcriptional regulation. Plant Cell 6, 1157–1170.

    CAS  PubMed  Google Scholar 

  • Elmer, J. S., Brand, L., Sunter, G., Gardiner, W. E., Bisaro, D. M., & Rogers, S. G. (1988). Genetic analysis of the tomato golden mosaic virus. II. The product of the AL1 coding sequence is required for replication. Nucleic Acids Res. 16, 7043–7060.

    CAS  PubMed  Google Scholar 

  • Fontes, E. P., Eagle, P. A., Sipe, P. S., Luckow, V. A., & Hanley-Bowdoin, L. (1994a). Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J. Biol. Chem. 269, 8459–8465.

    CAS  PubMed  Google Scholar 

  • Fontes, E. P., Gladfelter, H. J., Schaffer, R. L., Petty, I. T., & Hanley-Bowdoin, L. (1994b). Geminivirus replication origins have a modular organization. Plant Cell 6, 405–416.

    CAS  PubMed  Google Scholar 

  • Frischmuth, S., Frischmuth, T., & Jeske, H. (1991). Transcript mapping of Abutilon mosaic virus, a geminivirus. Virology 185, 596–604.

    CAS  PubMed  Google Scholar 

  • Goodman, R. M. (1981). Geminiviruses. In E. Kurstak (Ed.), Handbook of Plant Virus Infections and Comparative Diagnosis. Amsterdam: Elsevier/North-Holland Biomedical Press, pp. 879–910.

    Google Scholar 

  • Gröning, B. R., Hayes, R. J., & Buck, K. W. (1994). Simultaneous regulation of tomato golden mosaic virus coat protein and AL1 gene expression: expression of the AL4 gene may contribute to suppression of the AL1 gene. J. Gen. Virol. 75, 721–726.

    PubMed  Google Scholar 

  • Gutierrez, C. (1999). Geminivirus DNA replication. Cell Mol. Life Sci. 56, 313–329.

    CAS  PubMed  Google Scholar 

  • Gutierrez, C. (2000). DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J. 19, 792–799.

    CAS  PubMed  Google Scholar 

  • Haley, A., Zhan, X., Richardson, K., Head, K., & Morris, B. (1992). Regulation of the activities of African cassava mosaic virus promoters by the AC1, AC2, and AC3 gene products. Virology 188, 905–909.

    CAS  PubMed  Google Scholar 

  • Hallan, V. & Gafni, Y. (2001). Tomato yellow leaf curl virus (TYLCV) capsid protein (CP) subunit interactions: implications for viral assembly. Arch. Virol. 146, 1765–1773.

    CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin, L., Elmer, J. S., & Rogers, S. G. (1988). Transient expression of heterologous RNAs using tomato golden mosaic virus. Nucleic Acids Res. 16, 10511–10528.

    CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S., & Robertson, D. (2000). Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit. Rev. Biochem. Mol. Biol. 35, 105–140.

    CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin, L., Settlage, S. B., & Robertson, D. (2004). Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication. Mol. Plant Pathol. 5, 149–156.

    CAS  Google Scholar 

  • Harrison, B. D. (1985). Advances in geminivirus research. Annu. Rev. Phytopathol. 23, 55–82.

    CAS  Google Scholar 

  • Hartitz, M. D., Sunter, G., & Bisaro, D. M. (1999). The tomato golden mosaic virus transactivator (TrAP) is a single-stranded DNA and zinc-binding phosphoprotein with an acidic activation domain. Virology 263, 1–14.

    CAS  PubMed  Google Scholar 

  • Heyraud, F., Matzeit, V., Kammann, M., Schaefer, S., Schell, J., & Gronenborn, B. (1993). Identification of the initiation sequence for viral-strand DNA synthesis of wheat dwarf virus. EMBO J. 12, 4445–4452.

    CAS  PubMed  Google Scholar 

  • Heyraud-Nitschke, F., Schumacher, S., Laufs, J., Schaefer, S., Schell, J., & Gronenborn, B. (1995). Determination of the origin cleavage and joining domain of geminivirus Rep proteins. Nucleic Acids Res. 23, 910–916.

    CAS  PubMed  Google Scholar 

  • Hickman, A. B., Ronning, D. R., Kotin, R. M., & Dyda, F. (2002). Structural unity among viral origin binding proteins: crystal structure of the nuclease domain of adeno-associated virus Rep. Mol. Cell 10, 327–337.

    CAS  PubMed  Google Scholar 

  • Höhnle, M., Höfer, P., Bedford, I. D., Briddon, R. W., Markham, P. G., & Frischmuth, T. (2001). Exchange of three amino acids in the coat protein results in efficient whitefly transmission of a nontransmissible Abutilon mosaic virus isolate. Virology 290, 164–171.

    PubMed  Google Scholar 

  • Iyer, L. M., Leipe, D. D., Koonin, E. V., & Aravind, L. (2004). Evolutionary history and higher order classification of AAA + ATPases. J. Struct. Biol. 146, 11–31.

    CAS  PubMed  Google Scholar 

  • Jupin, I., De Kouchkovsky, F., Jouanneau, F., & Gronenborn, B. (1994). Movement of tomato yellow leaf curl geminivirus (TYLCV): involvement of the protein encoded by ORF C4. Virology 204, 82–90.

    CAS  PubMed  Google Scholar 

  • Jupin, I., Hericourt, F., Benz, B., & Gronenborn, B. (1995). DNA replication specificity of TYLCV geminivirus is mediated by the amino-terminal 116 amino acids of the Rep protein. FEBS Lett. 362, 116–120.

    CAS  PubMed  Google Scholar 

  • Kheyr-Pour, A., Bendahmane, M., Matzeit, V., Accotto, G. P., Crespi, S., & Gronenborn, B. (1991). Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res. 19, 6763–6769.

    CAS  PubMed  Google Scholar 

  • Kheyr-Pour, A., Bananej, K., Dafalla, G. A., Caciagli, P., Noris, E., Ahoonmanesh, A., Lecoq, H., & Gronenborn, B. (2000). Watermelon chlorotic stunt virus from the Sudan and Iran: sequence comparisons and identification of a whitefly-transmission determinant. Phytopathology 90, 629–635.

    CAS  PubMed  Google Scholar 

  • Kikuno, R., Toh, H., Hayashida, H., & Miyata, T. (1984). Sequence similarity between putative gene products of geminiviral DNAs. Nature 308, 562.

    CAS  PubMed  Google Scholar 

  • Kim, K. S., Shock, T. L., & Goodman, R. M. (1978). Infection of Phaseolus vulgaris by bean golden mosaic virus: ultrastructural aspects. Virology 89, 22–33.

    CAS  PubMed  Google Scholar 

  • Kong, L. J., Orozco, B. M., Roe, J. L., Nagar, S., Ou, S., Feiler, H. S., Durfee, T., Miller, A. B., Gruissem, W., Robertson, D., & Hanley-Bowdoin, L. (2000). A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J. 19, 3485–3495.

    CAS  PubMed  Google Scholar 

  • Koonin, E. V. (1993). A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 21, 2541–2547.

    CAS  PubMed  Google Scholar 

  • Kunik, T., Palanichelvam, K., Czosnek, H., Citovsky, V., & Gafni, Y. (1998). Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant J. 13, 393–399.

    CAS  PubMed  Google Scholar 

  • Laufs, J., Jupin, I., David, C., Schumacher, S., Heyraud-Nitschke, F., & Gronenborn, B. (1995). Geminivirus replication: genetic and biochemical characterization of Rep protein function, a review. Biochimie 77, 765–773.

    CAS  PubMed  Google Scholar 

  • Laufs, J., Traut, W., Heyraud, F., Matzeit, V., Rogers, S. G., Schell, J., & Gronenborn, B. (1995). In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc. Natl. Acad. Sci. USA 92, 3879–3883.

    CAS  PubMed  Google Scholar 

  • Lazarowitz, S. G. & Beachy, R. N. (1999). Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11, 535–548.

    CAS  PubMed  Google Scholar 

  • Lazarowitz, S. G., Wu, L. C., Rogers, S. G., & Elmer, J. S. (1992). Sequence-specific interaction with the viral AL1 protein identifies a geminivirus DNA replication origin. Plant Cell 4, 799–809.

    CAS  PubMed  Google Scholar 

  • Li, Z. H., Zhou, X. P., Zhang, X., & Xie, Y. (2004). Molecular characterization of tomato-infecting begomoviruses in Yunnan, China. Arch. Virol. 149, 1721–1732.

    CAS  PubMed  Google Scholar 

  • Lin, B., Akbar Behjatnia, S. A., Dry, I. B., Randles, J. W., & Rezaian, M. A. (2003). High-affinity Rep-binding is not required for the replication of a geminivirus DNA and its satellite. Virology 305, 353–363.

    CAS  PubMed  Google Scholar 

  • Lucioli, A., Noris, E., Brunetti, A., Tavazza, R., Ruzza, V., Castillo, A. G., Bejarano, E. R., Accotto, G. P., & Tavazza, M. (2003). Tomato yellow leaf curl Sardinia virus Rep-derived resistance to homologous and heterologous geminiviruses occurs by different mechanisms and is overcome if virus-mediated transgene silencing is activated. J. Virol. 77, 6785–6798.

    CAS  PubMed  Google Scholar 

  • Luque, A., Sanz-Burgos, A. P., Ramirez-Parra, E., Castellano, M. M., & Gutierrez, C. (2002). Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology 302, 83–94.

    CAS  PubMed  Google Scholar 

  • Malik, P. S., Kumar, V., Bagewadi, B., & Mukherjee, S. K. (2005). Interaction between coat protein and replication initiation protein of Mung bean yellow mosaic India virus might lead to control of viral DNA replication. Virology 337, 273–283.

    CAS  PubMed  Google Scholar 

  • Mansoor, S., Khan, S. H., Bashir, A., Saeed, M., Zafar, Y., Malik, K. A., Briddon, R., Stanley, J., & Markham, P. G. (1999). Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259, 190–199.

    CAS  PubMed  Google Scholar 

  • Morin, S., Ghanim, M., Sobol, I., & Czosnek, H. (2000). The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and nontransmissible begomoviruses in the yeast two-hybrid system. Virology 276, 404–416.

    CAS  PubMed  Google Scholar 

  • Morin, S., Ghanim, M., Zeidan, M., Czosnek, H., Verbeek, M., & van den Heuvel, J. F. (1999). A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology 256, 75–84.

    CAS  PubMed  Google Scholar 

  • Mullineaux, P. M., Rigden, J. E., Dry, I. B., Krake, L. R., & Rezaian, M. A. (1993). Mapping of the polycistronic RNAs of tomato leaf curl geminivirus. Virology 193, 414–423.

    CAS  PubMed  Google Scholar 

  • Navot, N., Pichersky, E., Zeidan, M., Zamir, D., & Czosnek, H. (1991). Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185, 151–161.

    CAS  PubMed  Google Scholar 

  • Noris, E., Jupin, I., Accotto, G. P., & Gronenborn, B. (1996). DNA-binding activity of the C2 protein of tomato yellow leaf curl geminivirus. Virology 217, 607–612.

    CAS  PubMed  Google Scholar 

  • Noris, E., Vaira, A. M., Caciagli, P., Masenga, V., Gronenborn, B., & Accotto, G. P. (1998). Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J. Virol. 72, 10050–10057.

    CAS  PubMed  Google Scholar 

  • Noris, E., Lucioli, A., Tavazza, R., Caciagli, P., Accotto, G. P., & Tavazza, M. (2004). Tomato yellow leaf curl Sardinia virus can overcome transgene-mediated RNA silencing of two essential viral genes. J. Gen. Virol. 85, 1745–1749.

    CAS  PubMed  Google Scholar 

  • Orozco, B. M. & Hanley-Bowdoin, L. (1996). A DNA structure is required for geminivirus replication origin function. J. Virol. 70, 148–158.

    CAS  PubMed  Google Scholar 

  • Orozco, B. M., Miller, A. B., Settlage, S. B., & Hanley-Bowdoin, L. (1997). Functional domains of a geminivirus replication protein. J. Biol. Chem. 272, 9840–9846.

    CAS  PubMed  Google Scholar 

  • Orozco, B. M., Kong, L. J., Batts, L. A., Elledge, S., & Hanley-Bowdoin, L. (2000). The multifunctional character of a geminivirus replication protein is reflected by its complex oligomerization properties. J. Biol. Chem. 275, 6114–6122.

    CAS  PubMed  Google Scholar 

  • Padidam, M., Beachy, R. N., & Fauquet, C. M. (1995). Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J. Gen. Virol. 76, 25–35.

    CAS  PubMed  Google Scholar 

  • Padidam, M., Beachy, R. N., & Fauquet, C. M. (1996). The role of AV2 (“precoat”) and coat protein in viral replication and movement in tomato leaf curl geminivirus. Virology 224, 390–404.

    CAS  PubMed  Google Scholar 

  • Palanichelvam, K., Kunik, T., Citovsky, V., & Gafni, Y. (1998). The capsid protein of tomato yellow leaf curl virus binds cooperatively to single-stranded DNA. J. Gen. Virol. 79, 2829–2833.

    CAS  PubMed  Google Scholar 

  • Pooggin, M., Shivaprasad, P. V., Veluthambi, K., & Hohn, T. (2003). RNAi targeting of DNA virus in plants. Nat. Biotechnol. 21, 131–132.

    CAS  PubMed  Google Scholar 

  • Pooma, W. & Petty, I. T. (1996). Tomato golden mosaic virus open reading frame AL4 is genetically distinct from its C4 analogue in monopartite geminiviruses. J. Gen. Virol. 77, 1947–1951.

    CAS  PubMed  Google Scholar 

  • Rigden, J. E., Dry, I. B., Mullineaux, P. M., & Rezaian, M. A. (1993). Mutagenesis of the virion-sense open reading frames of tomato leaf curl geminivirus. Virology 193, 1001–1005.

    CAS  PubMed  Google Scholar 

  • Rigden, J. E., Krake, L. R., Rezaian, M. A., & Dry, I. B. (1994). ORF C4 of tomato leaf curl geminivirus is a determinant of symptom severity. Virology 204, 847–850.

    CAS  PubMed  Google Scholar 

  • Rochester, D. E., Kositratana, W., & Beachy, R. N. (1990). Systemic movement and symptom production following agroinoculation with a single DNA of tomato yellow leaf curl geminivirus (Thailand). Virology 178, 520–526.

    CAS  PubMed  Google Scholar 

  • Rojas, M. R., Jiang, H., Salati, R., Xoconostle-Cazares, B., Sudarshana, M. R., Lucas, W. J., & Gilbertson, R. L. (2001). Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291, 110–125.

    CAS  PubMed  Google Scholar 

  • Saeed, M., Behjatnia, S. A., Mansoor, S., Zafar, Y., Hasnain, S., & Rezaian, M. A. (2005). A single complementary-sense transcript of a geminiviral DNA beta satellite is determinant of pathogenicity. Mol. Plant Microbe Interact. 18, 7–14.

    CAS  PubMed  Google Scholar 

  • Sanderfoot, A. A. & Lazarowitz, S. G. (1996). Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins. Trends Cell Biol. 6, 353–358.

    CAS  PubMed  Google Scholar 

  • Saunders, K., Bedford, I. D., Briddon, R. W., Markham, P. G., Wong, S. M., & Stanley, J. (2000). A unique virus complex causes Ageratum yellow vein disease. Proc. Natl. Acad. Sci. USA 97, 6890–6895.

    CAS  PubMed  Google Scholar 

  • Saunders, K., Norman, A., Gucciardo, S., & Stanley, J. (2004). The DNA beta satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (betaC1). Virology 324, 37–47.

    CAS  PubMed  Google Scholar 

  • Selth, L. A., Dogra, S. C., Rasheed, M. S., Healy, H., Randles, J. W., & Rezaian, M. A. (2005). A NAC Domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17, 311–325.

    CAS  PubMed  Google Scholar 

  • Settlage, S. B., See, R. G., & Hanley-Bowdoin, L. (2005). Geminivirus C3 protein: replication enhancement and protein interactions. J. Virol. 79, 9885–9895.

    CAS  PubMed  Google Scholar 

  • Stanley, J. (1995). Analysis of African cassava mosaic virus recombinants suggests strand nicking occurs within the conserved nonanucleotide motif during the initiation of rolling circle DNA replication. Virology 206, 707–712.

    CAS  PubMed  Google Scholar 

  • Stanley, J. & Latham, J. R. (1992). A symptom variant of beet curly top geminivirus produced by mutation of open reading frame C4. Virology 190, 506–509.

    CAS  PubMed  Google Scholar 

  • Stanley, J., Bisaro, D. M., Briddon, R. W., Brown, J. K., Fauquet, C. M., Harrison, B. D., Rybicki, E. P., & Stenger, D. C. (2005). Geminiviridae. In C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, & L. A. Ball (Eds.), Virus Taxonomy, Eighth Report of the International Committee on Taxonomy of Viruses. London: Elsevier/Academic Press, pp. 301–326.

    Google Scholar 

  • Sung, Y. K. & Coutts, R. H. (1995). Mutational analysis of potato yellow mosaic geminivirus. J. Gen. Virol. 76, 1773–1780.

    CAS  PubMed  Google Scholar 

  • Sunter, G. & Bisaro, D. M. (1992). Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4, 1321–1331.

    CAS  PubMed  Google Scholar 

  • Sunter, G., Gardiner, W. E., & Bisaro, D. M. (1989). Identification of tomato golden mosaic virus-specific RNAs in infected plants. Virology 170, 243–250.

    CAS  PubMed  Google Scholar 

  • Sunter, G., Hartitz, M. D., Hormuzdi, S. G., Brough, C. L., & Bisaro, D. M. (1990). Genetic analysis of tomato golden mosaic virus: ORF AL2 is required for coat protein accumulation while ORF AL3 is necessary for efficient DNA replication. Virology 179, 69–77.

    CAS  PubMed  Google Scholar 

  • Townsend, R., Stanley, J., Curson, S. J., & Short, M. N. (1985). Major polyadenylated transcripts of cassava latent virus and location of the gene encoding coat protein. EMBO J. 4, 33–37.

    CAS  PubMed  Google Scholar 

  • Trinks, D., Rajeswaran, R., Shivaprasad, P. V., Akbergenov, R., Oakeley, E. J., Veluthambi, K., Hohn, T., & Pooggin, M. M. (2005). Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J. Virol. 79, 2517–2527.

    CAS  PubMed  Google Scholar 

  • van Wezel, R., Dong, X., Liu, H., Tien, P., Stanley, J., & Hong, Y. (2002). Mutation of three cysteine residues in Tomato yellow leaf curl virus-China C2 protein causes dysfunction in pathogenesis and posttranscriptional gene-silencing suppression. Mol. Plant Microbe Interact. 15, 203–208.

    Google Scholar 

  • van Wezel, R., Liu, H., Tien, P., Stanley, J., & Hong, Y. (2001). Gene C2 of the monopartite geminivirus Tomato yellow leaf curl virus-China encodes a pathogenicity determinant that is localized in the nucleus. Mol. Plant Microbe Interact. 14, 1125–1128.

    PubMed  Google Scholar 

  • Vanitharani, R., Chellappan, P., & Fauquet, C. M. (2005). Geminiviruses and RNA silencing. Trends Plant. Sci. 10, 144–151.

    CAS  PubMed  Google Scholar 

  • Vanitharani, R., Chellappan, P., Pita, J. S., & Fauquet, C. M. (2004). Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J. Virol. 78, 9487–9498.

    CAS  PubMed  Google Scholar 

  • Vargason, J. M., Szittya, G., Burgyan, J., & Tanaka Hall, T. M. (2003). Size selective recognition of siRNA by an RNA silencing suppressor. Cell 115, 799–811.

    CAS  PubMed  Google Scholar 

  • Voinnet, O., Pinto, Y. M., & Baulcombe, D. C. (1999). Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad Sci. USA 96, 14147–14152.

    CAS  PubMed  Google Scholar 

  • Wang, H., Hao, L., Shung, C. Y., Sunter, G., & Bisaro, D. M. (2003). Adenosine Kinase Is Inactivated by Geminivirus AL2 and L2 Proteins. Plant Cell 15, 3020–3032.

    CAS  PubMed  Google Scholar 

  • Wang, H., Buckley, K. J., Yang, X., Buchmann, R. C., & Bisaro, D. M. (2005). Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J. Virol. 79, 7410–7418.

    CAS  PubMed  Google Scholar 

  • Wartig, L., Kheyr-Pour, A., Noris, E., De Kouchkovsky, F., Jouanneau, F., Gronenborn, B., & Jupin, I. (1997). Genetic analysis of the monopartite tomato yellow leaf curl geminivirus: roles of V1, V2, and C2 ORFs in viral pathogenesis. Virology 228, 132–140.

    CAS  PubMed  Google Scholar 

  • Xie, Q., Sanz-Burgos, A. P., Hannon, G. J., & Gutierrez, C. (1996). Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J. 15, 4900–4908.

    CAS  PubMed  Google Scholar 

  • Yin, Q., Yang, H., Gong, Q., Wang, H., Liu, Y., Hong, Y., & Tien, P. (2001). Tomato yellow leaf curl China virus: monopartite genome organization and agroinfection of plants. Virus Res. 81, 69–76.

    CAS  PubMed  Google Scholar 

  • Zhan, X. C., Haley, A., Richardson, K., & Morris, B. (1991). Analysis of the potential promoter sequences of African cassava mosaic virus by transient expression of the beta-glucuronidase gene. J. Gen. Virol. 72, 2849–2852.

    CAS  PubMed  Google Scholar 

  • Zhang, W., Olson, N. H., Baker, T. S., Faulkner, L., Agbandje-McKenna, M., Boulton, M. I., Davies, J. W., & McKenna, R. (2001). Structure of the Maize streak virus geminate particle. Virology 279, 471–477.

    CAS  PubMed  Google Scholar 

  • Zhou, X., Xie, Y., Tao, X., Zhang, Z., Li, Z., & Fauquet, C. M. (2003). Characterization of DNAbeta associated with begomoviruses in China and evidence for co-evolution with their cognate viral DNA-A. J. Gen. Virol. 84, 237–247.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Gronenborn, B. (2007). The Tomato Yellow Leaf Curl Virus Genome and Function of its Proteins. In: Czosnek, H. (eds) Tomato Yellow Leaf Curl Virus Disease. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4769-5_5

Download citation

Publish with us

Policies and ethics