Skip to main content

ANAEROBIC DEHALOGENATION OF HALOGENATED ORGANIC COMPOUNDS: NOVEL STRATEGIES FOR BIOREMEDIATION OF CONTAMINATED SEDIMENTSOF CONTAMINATED SEDIMENTSOF CONTAMINATED SEDIMENTSOF CONTAMINATED SEDIMENTS

  • Conference paper
Soil and Water Pollution Monitoring, Protection and Remediation

Part of the book series: NATO Science Series ((NAIV,volume 69))

Abstract

Remediation of sediments contaminated with toxic chemicals is one of the greatest challenges for restoration of estuaries. Halogenated organic compounds constitute one of the largest groups of environmental pollutants and their use has resulted in widespread dissemination and environmental contamination, with freshwater, estuarine and marine sediments as significant sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

REFERENCES

  • Adrian, L., Szewzyk, U., Wecke, J., and Görisch, H., 2000, Bacterial dehalorespiration with chlorinated benzenes, Nature 408:580–583.

    Article  CAS  Google Scholar 

  • Ahn, Y.-B., Rhee, S.-K., Fennell, D.E., Kerkhof, L.J., Hentschel, U., and Häggblom M.M., 2003, Reductive dehalogenation of brominated phenolic compounds by microorganisms associated with the marine sponge Aplysina aerophoba, Appl. Environ. Microbiol. 69:4159–4166.

    Article  CAS  Google Scholar 

  • Ahn, Y.-B., Häggblom, M.M., and Fennell, D.E., 2005, Co-amendment with halogenated compounds enhances anaerobic microbial dechlorination of 1,2,3,4-tetrachlorodibenzo-pdioxin and 1,2,3,4-tetrachlorodibenzofuran in estuarine sediments, Environ. Toxicol. Chem. 24:2775–2784.

    Article  CAS  Google Scholar 

  • Albrecht, I.D., Barkovskii, A.L., and Adriaens, P., 1999, Production and dechlorination of 2,3,7,8-tetrachlorodibenzo-p-dioxin in historically-contaminated estuarine sediments, Environ. Sci. Technol. 33:737–744.

    Article  CAS  Google Scholar 

  • Alder, A.C., Häggblom, M.M., Oppenheimer, S.R., and Young, L.Y., 1993, Reductive dechlorination of polychlorinated biphenyls in freshwater and marine sediments, Environ. Sci. Technol. 27:530–538.

    Article  CAS  Google Scholar 

  • Bedard, D.L., 2003, Polychlorinated biphenyls in aquatic sediments: environmental fate and outlook for biological treatments, In: Dehalogenation: Microbial Processes and Environmental Applications, M.M. Häggblom and I.D. Bossert, eds, Kluwer Academic Publishers, Boston, pp. 443–465.

    Google Scholar 

  • Bedard, D.L., Van Dort, H., and DeWeerd, K.A., 1998, Brominated biphenyls prime extensive microbial reductive dehalogenation of Aroclor 1260 in Housatonic River sediment, Appl Environ Microbiol 64:1786–1795.

    CAS  Google Scholar 

  • Beurskens, J.E.M., Toussaint, M., de Wolf, J., van der Steen, J.M.D., Slot, P.C., Commandeur, L.C.M., and Parsons, J.R., 1995, Dehalogenation of chlorinated dioxins by an anaerobic microbial consortium from sediment, Environ. Toxicol. Chem. 14:939–943.

    CAS  Google Scholar 

  • Boyle, A.W., Knight, V.K., Häggblom, M.M., and Young, L.Y., 1999a, Transformation of 2,4-dichlorophenoxyacetic acid in four different marine and estuarine sediments: effects of sulfate, hydrogen and acetate on dehalogenation and side chain cleavage, FEMS Microbiol. Ecol. 29:105–113.

    Article  CAS  Google Scholar 

  • Boyle, A.W., Häggblom, M.M., and Young, L.Y., 1999b, Dehalogenation of lindane (Îł-hexachlorocyclohexane) by anaerobic bacteria from marine sediments and by sulfatereducing bacteria, FEMS Microbiol. Ecol. 29:379–387.

    CAS  Google Scholar 

  • Boyle, A.W., Phelps, C.D., and Young, L.Y., 1999c, Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol, Appl. Environ. Microbiol. 65:1133–1140.

    CAS  Google Scholar 

  • Bossert, I.D., Häggblom, M.M., and Young, L.Y., 2003 Microbial ecology of dehalogenation, In: Dehalogenation: Microbial Processes and Environmental Applications, M.M. Häggblom and I.D. Bossert, eds, Kluwer Academic Publishers, Boston, pp. 33–52.

    Google Scholar 

  • Bunge, M., Adrian, L., Kraus, A., Opel, M., Lorenz, W.G., Andreesen, J.R., Görisch, H., and Lechner, U., 2003 Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium, Nature 421:357–360.

    Article  CAS  Google Scholar 

  • Cho, Y.-C., Ostrofsky, E.B., Sokol, R.C., Frohnhoefer, R.C., and Rhee, G.-Y., 2002, Enhancement of microbial PCB dechlorination by chlorobenzoates, chlorophenols and chlorobenzenes, FEMS Microbiol. Ecol. 42:51–58.

    Article  CAS  Google Scholar 

  • Cutter, L.A., Watts, J.E.M., Sowers, K.R., and May, H.D., 2001, Identification of a bacterium that links its growth to the reductively dechlorination of 2,3,5,6-chlorobiphenyl, Environ. Microbiol. 3:699–709.

    Article  CAS  Google Scholar 

  • DeWeerd, K.A., Concannon, F., and Suflita, J.M., 1991. Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei, Appl. Environ. Microbiol. 57:1929–1934.

    CAS  Google Scholar 

  • DeWeerd, K.A., and Bedard, D.L., 1999, Use of halogenated benzoates and other halogenated aromatic compounds to stimulate the microbial dechlorination of PCBs, Environ. Sci. Technol. 33:2057–2063.

    Article  CAS  Google Scholar 

  • Fennell, D.E., Gossett, J.M., and Zinder, S.H., 1997, Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene, Environ. Sci. Technol. 31:918–926.

    Article  CAS  Google Scholar 

  • Fennell, D.E., and Gossett, J.M., 1998, Modeling the production of and competition for hydrogen in a dechlorinating culture, Environ. Sci. Technol. 32:2450–2460.

    Article  CAS  Google Scholar 

  • Fennell, D.E., and Gossett, J.M., 2003, Microcosms for site-specific evaluation of enhanced biological reductive dehalogenation, In: Dehalogenation: Microbial Processes and Environmental Applications, M.M. Häggblom and I.D. Bossert, eds, Kluwer Academic Publishers, Boston, pp. 385–420.

    Google Scholar 

  • Fennell, D.E., Rhee, S.-K., Ahn, Y.-B., Häggblom, M.M., and Kerkhof, L.J., 2004a Detecting the dehalogenating microorganism in a sulfidogenic, 2-bromophenol-utilizing enrichment by T-RFLP fingerprinting of ribosomes, Appl. Environ. Microbiol. 70:1169–1175.

    Article  CAS  Google Scholar 

  • Fennell, D.E., Nijenhuis, I., Wilson, S.F., Zinder, S.H., and Häggblom, M.M., 2004b, Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants, Environ. Sci. Technol. 38:2075–2081.

    Article  CAS  Google Scholar 

  • Gruden, C.L., Fu, Q.S., Barkovskii, A.L., Albrecht, I.D., Lynam, M.M., and Adriaens, P., 2003, Dechlorination of sediment dioxins: Catalysts, mechanisms, and implications for remedial strategies and dioxin cycling, In: Dehalogenation: Microbial Processes and Environmental Applications, M.M. Häggblom and I.D. Bossert, eds, Kluwer Academic Publishers, Boston, pp. 347–372.

    Google Scholar 

  • Häggblom, M.M., 1992, Microbial breakdown of halogenated aromatic pesticides and related compounds, FEMS Microbiol. Rev. 103:29–72.

    Article  Google Scholar 

  • Häggblom, M.M., 1998, Reductive dehalogenation by a sulfate-reducing consortium, FEMS Microbiol. Ecol. 26:35–41.

    Article  Google Scholar 

  • Häggblom, M.M., Rivera, M.D., and Young, L.Y., 1993, Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids, Appl. Environ. Microbiol. 59:1162–1167.

    Google Scholar 

  • Häggblom M.M., and Young, L.Y., 1995, Anaerobic degradation of halogenated phenols by sulfate-reducing consortia, Appl. Environ. Microbiol. 61:1546–1550.

    Google Scholar 

  • Häggblom, M.M., Knight, V.K., and Kerkhof, L.J., 2000, Anaerobic decomposition of halogenated aromatic compounds, Environmental Pollution 107:199–207.

    Article  Google Scholar 

  • Häggblom, M.M., and Bossert, I.D., 2003 Halogenated organic compounds - a global perspective. In: Dehalogenation: Microbial Processes and Environmental Applications, M.M. Häggblom and I.D. Bossert, eds, Kluwer Academic Publishers, Boston, pp. 3–29.

    Google Scholar 

  • Häggblom, M.M., Ahn, Y.-B., Fennell, D.E., Kerkhof, L.J., and Rhee, S.K., 2003. Anaerobic dehalogenation of organohalide contaminants in the marine environment, In: Advances in Applied Microbiology, A.I. Laskin, G.M. Gadd, and J. Bennett, eds, Elsevier Science, San Diego, 53:61–84.

    Google Scholar 

  • Holliger, C., Regeard, C., and Diekert, G., 2003, Dehalogenation by anaerobic bacteria, In: Dehalogenation: Microbial Processes and Environmental Applications, M.M. Häggblom and I.D. Bossert, eds, Kluwer Academic Publishers, Boston, pp. 115–157.

    Google Scholar 

  • Hölscher, T., Krajmalnik-Brown, R., Ritalahti, K., von Wintzingerode, F., Görisch, H., Löffler, F., and Adrian, L., 2004, Multiple nonidentical reductive-dehalogenasehomologous genes are common in Dehalococcoides, Appl. Environ. Microbiol. 70:5290–5297.

    Article  CAS  Google Scholar 

  • Knight, V.K., Kerkhof, L.J. and, Häggblom, M.M., 1999, Community analyses of sulfidogenic 2-bromophenol dehalogenating and phenol degrading consortia, FEMS Microbiol. Ecol. 29:137–147.

    Article  CAS  Google Scholar 

  • Knight, V.K., Berman, M.H., and Häggblom, M.M., 2003, Biotransformation of 3,5-dibromo- 4-hydroxybenzonitrile (Bromoxynil) under denitrifying, Fe(III)-reducing, sulfidogenic and methanogenic conditions, Environ. Toxicol. Chem. 22:540–544.

    Article  CAS  Google Scholar 

  • Löffler, F.E., Tiedje, J.M., and Sanford, R.A., 1999, Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology, Appl. Environ. Microbiol.65:4049–4056.

    Google Scholar 

  • Löffler, F.E., Cole, J.R., Ritalahti, K.M., and Tiedje, J.M., 2003, Diversity of dechlorinating bacteria, In: Dehalogenation: Microbial Processes and Environmental Applications, M.M. Häggblom and I.D. Bossert, eds, Kluwer Academic Publishers, Boston, pp. 53–87.

    Google Scholar 

  • Mazur, C.S., and Jones, W.J., 2001, Hydrogen concentrations in sulfate-reducing estuarine sediments during PCE dehalogenation, Environ. Sci. Technol. 35:4783–4788.

    Article  CAS  Google Scholar 

  • Miller, G.S., Milliken, C.E., Sowers, K.R., and May, H.D., 2005, Reductive dechlorination of tetrachloroethene to trans-dichloroethene and cis-dichloroethene by PCB-dechlorinating bacterium DF-1, Environ. Sci. Technol. 39:2631–2635.

    Article  CAS  Google Scholar 

  • Monserrate, E., and Häggblom, M.M., 1997, Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions, Appl. Environ. Microbiol. 63:3911–3915.

    CAS  Google Scholar 

  • Ravit, B., Ehrenfeld, J.G., and Häggblom, M.M., 2005. Salt marsh rhizosphere effects microbial biotransformation of the widespread halogenated contaminant tetrabromobisphenol A (TBBPA). Soil Biol. Biochem. 37:1049–1057.

    Article  CAS  Google Scholar 

  • Rhee, S.-K., Fennell, D.E., Häggblom, M.M., and Kerkhof, L.J., 2003, Detection of reductive dehalogenase motifs in PCR fragments from a sulfidogenic 2-bromophenol-degrading consortium enriched from estuarine sediment, FEMS Microbiol. Ecol. 43:317–324.

    Article  CAS  Google Scholar 

  • Seshadri, R., Adrian, L., Fouts, D.E., Eisen, J.A., Phillippy, A.M., Methe, B.A., Ward, N.L., Nelson, W.C., Deboy, R.T., Khouri, H.M., Kolonay, J.F., Dodson, R.J., Daugherty, S.C., Brinkac, L.M., Sullivan, S.A., Madupu, R., Nelson, K.E., Kang, K.H., Impraim, M., Tran, K., Robinson, J.M., Forberger, H.A., Fraser, C.M., Zinder, S.H., and Heidelberg, J.F., 2005, Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes, Science 307:105–108.

    Article  CAS  Google Scholar 

  • Steward, C.C., Dixon, T.C., Chen, Y.P., and Lovell, C.R., 1995, Enrichment and isolation of a reductively debrominating bacterium from the burrow of a bromometabolite-producing marine hemichordate, Can. J. Microbiol. 41:637–642.

    Article  CAS  Google Scholar 

  • Sun, B., Cole, J.R., Sanford, R.A., and Tiedje, J.M., 2000, Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol, Appl. Environ. Microbiol. 66:2408–2413.

    Article  CAS  Google Scholar 

  • Sun, B., Cole, J.R., and Tiedje, J.M., 2001, Desulfomonile limimaris sp. nov., an anaerobic dehalogenating bacterium from marine sediments, Int. J. Syst. Evol. Microbiol. 51:365–371.

    CAS  Google Scholar 

  • Toussaint, M., van Herwijnen, R., and Parsons, J.R., 1998, Anaerobic bacterial dehalogenation of polyhalogenated dioxins and furans, In: Biodegradation of Dioxins and Furans, R.-M. Wittich, ed., Springer-Verlag, Berlin, pp. 29–52.

    Google Scholar 

  • Vargas, C., Fennell, D.E., and Häggblom, M.M., 2001, Anaerobic reductive dechlorination of chlorinated dioxins in estuarine sediments, Appl. Microbiol. Biotechnol. 57:786–790.

    Article  CAS  Google Scholar 

  • Voordeckers, J., Fennell, D.E., Jones, K., and Häggblom, M.M., 2002, Anaerobic biotransformation of tetrabromobisphenol A, tetrachlorobisphenol A, and bisphenol A in estuarine sediments, Environ. Sci. Technol. 36:696–701.

    Article  CAS  Google Scholar 

  • Watts, J.E.M., Wu, Q., Schreier, S.B., May, H.D., and Sowers, K.R., 2001, Comparative analyses of PCB dechlorinating communities in enrichment cultures using three different molecular screening techniques, Environ. Microbiol. 3:710–719.

    Article  CAS  Google Scholar 

  • Wu, Q., Meier, G.P., Sowers, K.R., and May, H.D., 2002a, Reductive dechlorination of polychlorinated benzenes by Bacterium DF-1, a polychlorinated biphenyl-dechlorinating microorganism, Environ. Sci. Technol. 36:3290–3294.

    Article  CAS  Google Scholar 

  • Wu, Q., Watts, J.E., Sowers, K.R., and May, H.D., 2002b, Identification of a bacterium that specifically catalyzes the reductive dechlorination of polychlorinated biphenyls with doubly flanked chlorines, Appl. Environ. Microbiol. 68:807–812.

    Article  CAS  Google Scholar 

  • Yang, Y., and McCarty, P.L., 1998, Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture, Environ. Sci. Technol. 32:3591–3597.

    Article  CAS  Google Scholar 

  • Zwiernik, M.J., Quensen, J.F., and Boyd, S.A., 1998, FeSO4 amendments stimulate extensive anaerobic PCB dechlorination, Environ. Sci. Technol. 32:3360–3365.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Häggblom, M.M., Fennell, D.E., Ahn, YB., Ravit, B., Kerkhof, L.J. (2006). ANAEROBIC DEHALOGENATION OF HALOGENATED ORGANIC COMPOUNDS: NOVEL STRATEGIES FOR BIOREMEDIATION OF CONTAMINATED SEDIMENTSOF CONTAMINATED SEDIMENTSOF CONTAMINATED SEDIMENTSOF CONTAMINATED SEDIMENTS. In: Twardowska, I., Allen, H.E., Häggblom, M.M., Stefaniak, S. (eds) Soil and Water Pollution Monitoring, Protection and Remediation. NATO Science Series, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4728-2_33

Download citation

Publish with us

Policies and ethics