Skip to main content

Total Intensity Light Scattering from Solutions of Macromolecules

  • Reference work entry
Soft Matter Characterization

Abstract:

The analysis of total intensity light scattering from solutions of macromolecules is discussed, covering the concentration range from infinite dilution to concentrated solutions, with a few examples for the scattering from colloidal dispersions of particles and micelles. The dependence on scattering angle is included over this entire range. Most of the discussion is limited to the Rayleigh-Gans-Debye scattering regime, but Mie scattering from large spheres is also discussed. Examples include the effects of heterogeneity of molecular weight and chemical composition, optically anisotropic chain elements, deviations from flexible chain conformational statistics and intermolecular association.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berry, G.C. (2000) Light scattering, classical: Size and size distribution classification. In Meyers, R.A. (ed.), Encyclopedia of Analytical Chemistry. Wiley, New York, pp. 5413–5448.

    Google Scholar 

  2. Burchard, W. (1999) Solution properties of branched macromolecules. Adv. Polym. Sci., 143, 113–194.

    Article  Google Scholar 

  3. Dingenouts, N., Bolze, J., Potschke, D., and Ballauff, M. (1999) Analysis of polymer latexes by small-angle X-ray scattering. Adv. Polym. Sci., 144, 1–47.

    Article  Google Scholar 

  4. Berry, G.C. and Cotts, P.M. (1999) Static and dynamic light scattering. In Pethrick, R.A. and Dawkins, J.V. (eds.), Modern Techniques for Polymer Characterisation. Wiley, London, 185.

    Google Scholar 

  5. Yamakawa, H. (1997) Helical Wormlike Chains in Polymer Solutions. Springer-Verlag, New York.

    Book  Google Scholar 

  6. Sorensen, C.M. (1997) Scattering and absorption of light by particles and aggregates. In Birdi, K.S. (ed.), Handbook of Surface and Colloid Chemistry. CRC Press, Boca Raton, FL, pp. 533–558.

    Google Scholar 

  7. van Zanten, J.H. (1996) Characterization of Vesicles and vesicular dispersions via scattering techniques. In Rosoff, M. (ed.), Vesicles. Marcel Dekker, New York.

    Google Scholar 

  8. Brown, W. (ed.), (1996) Light Scattering: Principles and Development. Oxford University Press, New York.

    Google Scholar 

  9. Berry, G.C. (1994) Static and dynamic light scattering on moderately concentrated solutions: Isotropic solutions of flexible and rodlike chains and nematic solutions of rodlike chains. Adv. Polym. Sci., 114, 233–290.

    Article  Google Scholar 

  10. Burchard, W. (1992) Static and dynamic light scattering approaches to structure determination in biopolymers. In Harding, S.E., Sattelle, D.B., Bloomfield, V.A. (eds.), Laser Light Scattering in Biochemistry. Royal Society Chemistry, Cambridge, UK, pp. 3–22.

    Google Scholar 

  11. Schmitz, K.S. (1990) An Introduction to Dynamic Light Scattering by Macromolecules. Academic Press, Boston.

    Google Scholar 

  12. Fujita, H. (1990) Polymer Solutions. Amsterdam, Elsevier.

    Google Scholar 

  13. Barber, P.W. and Hill, S.C. (1990) Light Scattering by Particles: Computational Methods. World Scientific, Singapore.

    Google Scholar 

  14. Russel, R.B., Saville, D.A., and Schowalter, W.R. (1989) Colloidal Dispersions. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  15. Casassa, E.F. (1989) Particle scattering factors in Rayleigh scattering. In Immergut, E.H. and Branderup, J. (eds.), Polymer Handbook. Wiley, New York, pp. 485–491.

    Google Scholar 

  16. Sadler, D.M. (1988) Neutron scattering from solid polymers. In Allen, G. (ed.), Comprehensive Polymer Science. Pergamon Press, New York, Chap. 32.

    Google Scholar 

  17. Mitchell, G.R. (1988) X-ray scattering from non-crystalline and liquid crystalline polymers. In Allen, G. (ed.), Comprehensive Polymer Science. Pergamon Press, New York, Chap. 31.

    Google Scholar 

  18. Kerker, M. (ed.) (1988) Selected papers on light scattering. SPIE Milestone Series, vol. 951. SPIE International Society for Optical Engineering, Bellingham, WA.

    Google Scholar 

  19. Gouesbet, G. and Grehan, G. (eds.) (1988) Optical Particle Sizing: Theory and Practice. Plenum Press, New York.

    Google Scholar 

  20. Berry, G.C. (1987) Light scattering. In Mark, H. et al. (eds.), Encyclopedia of Polymer Science and Engineering, vol. 8. Wiley, New York, pp. 721–794.

    Google Scholar 

  21. Weiner, B.B. (1984) Particle and droplet sizing using Fraunhofer diffraction. In Barth, H.G. (ed.), Modern Methods of Particle Size Analysis. Wiley, New York, pp. 135–172.

    Google Scholar 

  22. Burchard, W. (1983) Static and dynamic light scattering from branched polymers and biopolymers. Adv. Polym. Sci., 48, 1–124.

    Article  Google Scholar 

  23. Bohren, C.F. and Huffman, D.R. (1983) Absorption and Scattering of Light by Small Particles. Wiley, New York.

    Google Scholar 

  24. Glatter, O. and Kratky, O. (eds.) (1982) Small Angle X-ray Scattering. Academic Press, New York, p. 510.

    Google Scholar 

  25. Flory, P. (1979) Statistical Mechanics of Chain Molecules. Wiley-Interscience, New York.

    Google Scholar 

  26. Eisenberg, H. (1976) Biological macromolecules and polyelectrolytes in solution. In Harrington, W.F. and Peacocke, A.R. (eds.), Monographs on Physical Biochemistry, Oxford University Press, London.

    Google Scholar 

  27. Casassa, E.F. and Berry, G.C. (1975) Light scattering from solutions of macromolecules. In Slade, P.E. Jr. (ed.), Polymer Molecular Weights, Pt 1; vol. 4. Marcel Dekker, New York, pp. 161–286.

    Google Scholar 

  28. Huglin, M.B. (ed.) (1972) Light Scattering from Polymer Solutions. Academic Press, London.

    Google Scholar 

  29. Yamakawa, H. (1971) Modern Theory of Polymer Solutions. Harper and Row, New York.

    Google Scholar 

  30. Kerker, M. (1969) The Scattering of Light, and Other Electromagnetic Radiation. Academic Press, New York.

    Google Scholar 

  31. McIntyre, D. and Gornick, F. (eds.) (1964) Light scattering from dilute polymer solutions. In Klein, L. International Science Review Series, vol. 3. Gordon and Breach, New York.

    Google Scholar 

  32. Boll, R.H., Leacock, J.A., Clark, G.C. and Churchill, S.W. (1958) Tables of Light Scattering Functions; Relative Indices of Less than Unity, and Infinity. University of Michigan Press, Ann Arbor.

    Google Scholar 

  33. van de Hulst, H.C. (1957) Light Scattering by Small Particles. Wiley, New York.

    Google Scholar 

  34. Pangonis, W.J., Heller, W., and Jacobson, A. (1957) Tables of Light Scattering Functions for Spherical Particles. Wayne State University Press, Detroit.

    Google Scholar 

  35. Stacey, K.A. (1956) Light-scattering in Physical Chemistry. Academic Press, New York.

    Google Scholar 

  36. Guinier, A. and Fournet, G. (1955) Small-angle Scattering of X-rays. Wiley, New York.

    Google Scholar 

  37. Flory, P.J. (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca, NY.

    Google Scholar 

  38. Brown, W. (ed.) (1993) Dynamic Light Scattering. Clarendon Press, Oxford, UK.

    Google Scholar 

  39. Chu, B. (1991) Laser Light Scattering, 2nd edn. Academic Press, Boston.

    Google Scholar 

  40. Dahneke, B.E. (1983) Measurement of Suspended Particles by Quasi-elastic Light Scattering, Wiley Interscience, New York.

    Google Scholar 

  41. Berne, B.J. and Pecora, R. (2000) Dynamic Light Scattering, Dover, New York.

    Google Scholar 

  42. Benmouna, M. and Reed, W.F. (1996) Theoretical developments in static light scattering from polymers. Monographs on the Physics and Chemistry of Materials. 53, 1–29.

    Google Scholar 

  43. Zimm, B.H. (1948) The scattering of light and the radial distribution function of high polymer solutions. J. Chem. Phys., 16, 1093–1099.

    Article  ADS  Google Scholar 

  44. Kurata, M. (1982) Thermodynamics of Polymer Solutions; Translated by Hiroshi Fujita. Harwood Academic Publishers, New York.

    Google Scholar 

  45. Casassa, E.F. and Berry, G.C. (1988) Polymer solutions. In Allen, G. (ed.), Comprehensive Polymer Science. Pergamon Press, New York, Chap. 3.

    Google Scholar 

  46. de Gennes, P-G. (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, NY.

    Google Scholar 

  47. Yamakawa, H. and Fujii, M. (1974) Light scattering from wormlike chains Determination of the shift factor. Macromolecules, 7, 649–654.

    Article  ADS  Google Scholar 

  48. Noren, I.B.E., Bertoli, D.A., Ho, C., and Casassa, E.F. (1974) Tetramer-dimer equilibrium of carbon monoxyhemoglobin in 2M sodium chloride. Biochemistry, 13, 1683–1686.

    Article  Google Scholar 

  49. Stockmayer, W.H. (1999) Reminiscences of “light scattering in multicomponent systems.” J. Polym. Sci. Polym. Phys., 37, 642–643.

    Article  ADS  Google Scholar 

  50. Kirkwood, J.G. and Goldberg, R.J. (1950) Light scattering arising from composition fluctuations in multi-component systems. J. Chem. Phys., 18, 54–57.

    Article  ADS  Google Scholar 

  51. Stockmayer, W.H. (1950) Light scattering in multi-component systems. J. Chem. Phys., 18, 58–61.

    Article  ADS  Google Scholar 

  52. Benoit, H.C. and Strazielle, C. (1995) Interpretation of preferential adsorption using random phase approximation theory. Coll. Czech. Chem. Comm., 60, 1641–1652.

    Google Scholar 

  53. Casassa, E.F. (1971) Interpretation of Rayleigh scattering by polymers in mixed solvents. Makromol. Chem., 150, 251–254.

    Article  Google Scholar 

  54. Benoit, H. and Froelich, D. (1972) Application of light scattering to copolymers. In Huglin, M.B. (ed.), Light Scattering from Polymer Solutions. Academic Press, New York, pp. 467–501.

    Google Scholar 

  55. Benoit, H. (1963) Light scattering by dilute solutions of high polymers. In Kerker, M. (ed.), Electromagnetic Scattering. Pergamon Press, Elmworth, NY, pp. 285–301.

    Google Scholar 

  56. Horn, P. (1955) Light scattering in solutions of anisotropic macromolecules. Ann. Phys., 10, 386–434.

    Google Scholar 

  57. Berry, G.C. (1978) Properties of an optically anisotropic heterocyclic ladder polymer (BBL) in solution. J. Polym. Sci. Polym. Symp., 65, 143–172.

    Article  Google Scholar 

  58. Brown, D.J., Weatherby, E.J., and Alexander, K. (1988) Shape, concentration and anomalous diffraction effects in sizing solids in liquids. In Gouesbet, G. and Gréhan, G. (eds.), Optical Particle Sizing: Theory and Practice. Plenum Press, New York, pp. 351–362.

    Google Scholar 

  59. Glatter, O. and Hofer, M. (1988) Particle sizing of polydisperse samples by Mie-scattering. In Gouesbet, G. and Gréhan, G. (eds.), Optical Particle Sizing: Theory and Practice. Plenum Press, New York, pp. 121–133.

    Google Scholar 

  60. Urwin, J.R. (1972) Molecular weight distribution by turbidimetric titration. In Huglin, M.B. (ed.), Light Scattering from Polymer Solutions. Academic Press, New York, pp. 789–824.

    Google Scholar 

  61. Hirleman, E.D. and Dellenback, P.A. (1989) Adaptive Fraunhofer diffraction particle sizing instrument using a spatial light modulator. Appl. Opt., 28, 4870–4878.

    Article  ADS  Google Scholar 

  62. Hirleman, E.D. (1988) Modeling of multiple scattering effects in Fraunhofer diffraction particle analysis. In Gouesbet, G. and Gréhan, G. (eds.), Optical Particle Sizing: Theory and Practice. Plenum Press, New York, pp. 159–175.

    Google Scholar 

  63. Hirleman, E.D. (1988) Optimal scaling of the inverse Fraunhofer diffraction particle sizing problem: The linear system produced by quadrature. In Gouesbet, G. and Gréhan, G. (eds.), Optical Particle Sizing: Theory and Practice. Plenum Press, New York, pp. 135–146.

    Google Scholar 

  64. Hirleman, E.D. (1988) Modeling of multiple scattering effects in Fraunhofer diffraction particle size analysis. Part. Syst. Charact., 5, 57–65.

    Article  Google Scholar 

  65. Bertero, M., Boccacci, P., De Mol, C., Pike, E.R. (1988) Particle-size distributions from Fraunhofer diffraction. In Gouesbet, G. and Gréhan, G. (eds.), Optical Particle Sizing: Theory and Practice. Plenum Press, New York, pp. 99–105.

    Google Scholar 

  66. Hirleman, E.D. (1987) Optimal scaling of the inverse Fraunhofer diffraction particle sizing problem: The linear system produced by quadrature. Part. Charact., 4, 128–133.

    Article  Google Scholar 

  67. Berry, G.C. (1986) Molecular weight distribution. In Bever, M.B. (ed.), Encyclopedia of Materials Science and Engineering. Pergamon Press, Oxford, pp. 3759–3768.

    Google Scholar 

  68. Volkenstein, M.V. (1963) Configurational Statistics of Polymeric Chains. Interscience, New York.

    Google Scholar 

  69. Freed, K.F. (1987) Renormalization Group Theory of Macromolecules. Wiley, New York.

    Google Scholar 

  70. Berry, G.C. and Casassa, E.F. (1970) Thermodynamic and hydrodynamic behavior of dilute polymer solutions. J. Polym. Sci. D, 4, 1–66.

    Google Scholar 

  71. Oono, Y. (1985) Statistical physics of polymer solutions: conformation-space renormalization-group approach. Adv. in Chem. Phys., 61, 301–437.

    Article  Google Scholar 

  72. Berry, G.C. (1966) Thermodynamic and conformational properties of polystyrene. I. Light-scattering studies on dilute solutions of linear polystyrenes. J. Chem. Phys., 44, 4550–4564.

    Article  ADS  Google Scholar 

  73. Yamakawa, H. and Fujii, M. (1973) Binary cluster integrals in the theory of dilute polymer solutions. J. Chem. Phys., 58, 1523–1528.

    Article  ADS  Google Scholar 

  74. Yamakawa, H. and Stockmayer, W.H. (1972) Statistical mechanics of wormlike chains. II. Excluded volume effects. J. Chem. Phys., 57, 2843–2854. 52.

    Article  ADS  Google Scholar 

  75. Yamakawa, H. (1976) Statistical mechanics of wormlike chains. Pure Appl. Chem., 46, 135–141.

    Article  Google Scholar 

  76. Sullivan, V.J. and Berry, G.C. (1995) Light scattering studies on dilute solutions of semiflexible polyelectrolytes. Intl. J. Polym. Anal. Charact., 2, 55–69.

    Article  Google Scholar 

  77. Kurata, M. and Fukatsu, M. (1964) Unperturbed dimension and translational friction constant of branched polymers. J. Chem. Phys., 41, 2934–2944.

    Article  ADS  Google Scholar 

  78. Berry, G.C. and Orofino, T.A. (1964) Branched polymers. III. Dimensions of chains with small excluded volume. J. Chem. Phys., 40, 1614–1621.

    Article  ADS  Google Scholar 

  79. Casassa, E.F. and Berry, G.C. (1966) Angular distribution of intensity of Rayleigh scattering from comblike branched molecules. J. Polym. Sci. A-2, 4, 881–897.

    Article  Google Scholar 

  80. Solensky, P.J. and Casassa, E.F. (1980) Perturbation theory of dimensions of comb-like polymer chains with branches randomly spaced along the backbone. Macromolecules, 13, 500–506.

    Article  ADS  Google Scholar 

  81. Casassa, E.F. and Tagami, Y. (1968) Statistical thermodynamics of polymer solutions. VI. Comblike branched molecules with branches placed randomly along the backbone. J. Polym. Sci. Polym. Phys. Ed., 6, 63–89.

    ADS  Google Scholar 

  82. Bhandari, R. (1985) Scattering coefficients for a multilayered sphere: Analytic expressions and algorithms. Appl. Opt., 24, 1960–1967.

    Article  ADS  Google Scholar 

  83. van Zanten, J.H. (1995) The Zimm plot and its analogs as indicators of vesicle and micelle size polydispersity. J. Chem. Phys., 102, 9121–9128.

    Article  ADS  Google Scholar 

  84. van Zanten, J.H. (1994) Unilamellar vesicle diameter and wall thickness determined by Zimm's light scattering technique. Langmuir, 10, 4391–4393.

    Article  Google Scholar 

  85. Brown, W. and Mortensen, K. (2000) Scattering in Polymeric and Colloidal Systems. Gordan & Breach, Amsterdam, 586 pp.

    Google Scholar 

  86. Mays, H., Mortensen, K., and Brown, W. (2000) Microemulsions studied by scattering techniques. In Brown, W. and Mortensen, K. (eds.), Scattering in Polymeric and Colloidal Systems. Gordon & Breach, Amsterdam, Netherland, pp. 249–325.

    Google Scholar 

  87. Hahn, D.K. and Aragon, S.R. (1994) Mie scattering from anisotropic thick spherical shells. J. Chem. Phys., 101, 8409–8417.

    Article  ADS  Google Scholar 

  88. Strawbridge, K.B. and Hallett, F.R. (1992) Polydisperse Mie theory applied to hollow latex spheres: an integrated light-scattering study. Can. J. Phys., 70, 401–406.

    Article  ADS  Google Scholar 

  89. Asano, S. and Sato, M. (1980) Light scattering by randomly oriented spheroidal particles. Appl. Opt., 19, 962–974.

    Article  ADS  Google Scholar 

  90. Wyatt, P.J. (1962) Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric objects. Phys. Rev., 127, 1837–1843.

    Article  ADS  Google Scholar 

  91. Yoshizaki, T. (1980) Yamakawa H. Scattering functions of wormlike and helical wormlike chains. Macromolecules, 13, 1518–1525.

    Article  ADS  Google Scholar 

  92. Casassa, E.F. (1955) Light scattering from very long rod-like particles and an application to polymerized fibrinogen. J. Chem. Phys., 23, 596–597.

    Article  Google Scholar 

  93. Casassa, E.F. (1956) The conversion of fibrinogen to fibrin. XIX. The structure of the intermediate polymer of fibrinogen formed in alkaline solutions. J. Am. Chem. Soc., 78, 3980–3985.

    Article  Google Scholar 

  94. Nagai, K. (1972) Theory of light scattering by an isotropic system composed of anisotropic units with application to the Porod-Kratky chains. Polym. J., 3, 67–83.

    Article  Google Scholar 

  95. Nakamura, Y. and Norisuye, T. (2004) Scattering function for wormlike chains with finite thickness. J. Polym. Sci. Polym. Phys., 42, 1398–1407. 76.

    Article  ADS  Google Scholar 

  96. Koyama, R. (1973) Light scattering of stiff chain polymers. J. Phys. Soc. Jpn., 34, 1029–1038.

    Article  ADS  Google Scholar 

  97. des Clozeaux, J. (1973) Form factor of an infinite Kratky-Porod chain. Macromolecules, 6, 403–407.

    Article  ADS  Google Scholar 

  98. Peterlin, A. (1963) Light scattering by non-Gaussian macromolecular coils. In Kerker, M. (ed.), Electromagnetic Scattering. Pergamon Press, Elmworth, NY, pp. 357–375.

    Google Scholar 

  99. Porod, G. (1953) X-ray and light scattering by chain molecules in solution. J. Polym. Sci., 10, 157–166.

    Article  ADS  Google Scholar 

  100. Potschke, D., Hickl, P., Ballauff, M., Astrand, P-O., and Pedersen, J.S. (2000) Analysis of the conformation of worm-like chains by small-angle scattering: Monte Carlo simulations in comparison to analytical theory. Macromol. Theory Simul., 9, 345–353.

    Article  Google Scholar 

  101. Kholodenko, A.L. (1993) Analytical calculation of the scattering function for polymers of arbitrary flexibility using the Dirac propagator. Macromolecules, 26, 4179–4183.

    Article  ADS  Google Scholar 

  102. Pedersen, J.S. and Schurtenberger, P. (1996) Scattering functions of semiflexible polymers with and without excluded volume effects. Macromolecules, 29, 7602–7612.

    Article  ADS  Google Scholar 

  103. Ter Meer, H.U. and Burchard, W. (1985) Determination of chain flexibility by light scattering. Polym. Commun., 26, 273–275.

    Google Scholar 

  104. Porod, G. (1948) The dependence of small-angle x-ray scattering on the shape and size of colloidal particles in dilute systems. IV. Acta Phys Austriaca, 2, 255–292.

    Google Scholar 

  105. Magid, L.J., Han, Z., Li, Z., and Butler, P.D. (2000) Tuning microstructure of cationic micelles on multiple length scales: The role of electrostatics and specific ion binding. Langmuir, 16, 149–156.

    Article  Google Scholar 

  106. Gerber, M.J., Kline, S.R., and Walker, L.M. (2004) Characterization of rodlike aggregates generated from a cationic surfactant and a polymerizable counterion. Langmuir,  20, 8510–8516.

    Article  Google Scholar 

  107. Doi, M. and Edwards, S. (1986) The Theory of Polymer Dynamics. Clarendon Press, Oxford.

    Google Scholar 

  108. Goldstein, M. (1953) Scattering factors for certain polydisperse systems. J. Chem. Phys., 21, 1255–1258.

    Article  ADS  Google Scholar 

  109. Berry, G.C. (1971) Thermodynamic and conformational properties of polystyrene. III. Dilute solution studies on branched polymers. J. Polym. Sci. Part A-2, 9, 687–715.

    Article  Google Scholar 

  110. Wiscombe, W.J. (1980) Improved Mie scattering algorithms. Appl. Opt., 19, 1505–1509.

    Article  ADS  Google Scholar 

  111. Bohren, C.F.A. (1986) Recurrence relations for the Mie scattering coefficients. J. Opt. Soc, Am. A., 4, 612–613.

    Article  ADS  Google Scholar 

  112. Gulari, E., Annapragada, A., Gulari, E., and Jawad, B. (1987) Determination of particle size distributions using light-scattering techniques. ACS Symp. Ser., 332, 133–145.

    Article  Google Scholar 

  113. Hodkinson, J.R. (1966) Particle sizing by means of the forward scattering lobe. Appl. Opt., 5, 839–844.

    Article  ADS  Google Scholar 

  114. Meeten, G.H. and Navard, P. (1989) Small-angle scattering of polarized light. I. Comparison of theoretical predictions for isotropic and anisotropic spheres. J. Polym. Sci. Polym. Phys., 27, 2023–2035.

    Article  ADS  Google Scholar 

  115. Stein, R.S. and Srinivasarao, M. (1993) Fifty years of light scattering: a perspective. J. Polym. Sci. Polym. Phys., 31, 2003–2010.

    Article  ADS  Google Scholar 

  116. Meeten, G.H. (1982) Small-angle light scattering by spherulites in the anomalous diffraction approximation. Opt. Acta 29, 759–770.

    Article  ADS  Google Scholar 

  117. Rhodes, M.B. and Stein, R.S. (1969) Scattering of light from assemblies of oriented rods. J. Polym. Sci. A-2, 7, 1539–1558.

    Article  Google Scholar 

  118. Graessley, W.W. (2004) Polymer Liquids & Networks: Structure and Properties. Garland Science, New York.

    Google Scholar 

  119. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B. (1954) Molecular Theory of Gases and Liquids. Wiley, New York.

    MATH  Google Scholar 

  120. Cotts, P.M. and Berry, G.C. (1983) Studies on dilute solutions of rodlike macroions. II. Electrostatic effects. J. Polym. Sci. Polym. Phys. Ed., 21, 1255–1274.

    Article  ADS  Google Scholar 

  121. Benmouna, M., Duval, M., Strazielle, C., and Hakem, F.I. (1996) Static and dynamic light scattering from multicomponent polymer mixtures PS/PDMS/PMMA/toluene.  Acta Polym., 47, 29–34.

    Article  Google Scholar 

  122. Benmouna, M., Duval, M., Strazielle, C., Hakem, F-I., and Fischer, E.W. (1995) Theory of static scattering from polymer mixtures. The case of polystyrene/polydimethylsiloxane/poly(methyl methacrylate)/toluene. Macromol. Theory Simul., 4, 53–65.

    Article  Google Scholar 

  123. Aven, M.R. and Cohen, C. (1990) Light scattering from dilute polystyrene in mixtures of semidilute poly(dimethylsiloxane) and tetrahydrofuran. Macromolecules, 23, 476–486.

    Article  ADS  Google Scholar 

  124. Benoit, H., Benmouna, M., and Wu, W.L. (1990) Static scattering from multicomponent polymer and copolymer systems. Macromolecules, 23, 1511–1517.

    Article  ADS  Google Scholar 

  125. Benoit, H., Benmouna, M., Strazielle, C., and Cesteros, C. (1987) Light scattering from mixtures of homopolymers and copolymers. Theoretical results and experimental examples. Phys. Chem. Colloids Macromol. Proc. Int. Symp., 119–125.

    Google Scholar 

  126. Sato, T., Norisuye, T., and Fujita, H. (1987) Second and third virial coefficients for binary polystyrene mixtures in benzene. J. Polym. Sci. Polym. Phys., 25, 1–17.

    Article  ADS  Google Scholar 

  127. Kok, C.M. and Rudin, A. (1986) Second virial coefficients of polystyrene mixtures in 2-butanone. Eur. Polym. J., 22, 107–109.

    Article  Google Scholar 

  128. Stepanov, S. and Straube, E. (1985) Renormalization group evaluation of the second virial coefficient of polydisperse polymer solutions. J. Phys. Lett., 46, 1115–1122.

    Article  Google Scholar 

  129. Tong, Z. and Einaga, Y. (1984) Second virial coefficient of binary polystyrene mixtures in cyclohexane below the theta temperature. Polym. J., 16, 641–646.

    Article  Google Scholar 

  130. Noda, I., Kitano, T., and Nagasawa, M. (1977) The effect of molecular weight heterogeneity on the second virial coefficient of linear polymers in good solvents. J. Polym. Sci. Polym. Phys Ed., 15, 1129–1142.

    Article  ADS  Google Scholar 

  131. Welzen, T.L. (1980) Second virial coefficients for solutions of polystyrene mixtures obtained with low-angle laser light scattering. Br. Polym. J., 12, 95–98.

    Article  Google Scholar 

  132. Wallace, T.P. and Casassa, E.F. (1970) Second virial coefficient in solutions of mixtures of two polymer fractions. Polym. Prepr. (Am. Chem. Soc.), 11(1), 136–141.

    Google Scholar 

  133. Blum, J.J. and Morales, M.F. (1952) Light scattering of multicomponent macromolecular systems. J. Chem. Phys., 20, 1822.

    Article  ADS  Google Scholar 

  134. Stockmayer, W.H. and Stanley, H.E. (1950) Light-scattering measurement of interactions between unlike polymers. J. Chem. Phys., 18, 153–154.

    Article  ADS  Google Scholar 

  135. Casassa, E.F. (1962) Effect of heterogeneity in molecular weight on the second virial coefficient of polymers in good solvents. Polymer, 3, 625–638.

    Article  Google Scholar 

  136. Aelanei, N., Avram, E., and Paduraru, G. (2002) On the compatibility of polystyrene with polybutadiene and styrene-butadiene block copolymers. Anal. Stiint. Univ. Al. I. Cuza Chimie. 10, 237–242.

    Google Scholar 

  137. Clark, A.H. (2000) Direct analysis of experimental tie line data (two polymer-one solvent systems) using Flory-Huggins theory.  Carbohydr. Polym., 42, 337–351.

    Article  Google Scholar 

  138. Strazielle, C., Duval, M., and Benmouna, M. (1995) Elastic and quasielastic light scattering from mixtures of three polymers and a solvent: the effects of poly(methyl methacrylate) concentration and molecular weight on the properties of polystyrene/polydimethylsiloxane/toluene solutions. J. Polym. Sci. Polym. Phys., 33, 823–832.

    Article  ADS  Google Scholar 

  139. Kent, M.S., Tirrell, M., and Lodge, T.P. (1992) Solution properties of polymer mixtures. Macromolecules, 25, 5383–5397.

    Article  ADS  Google Scholar 

  140. Kaddour, L.O. and Strazielle, C. (1989) The scaling laws in ternary systems: polymer-polymer-good solvent. An experimental study. New Trends Phys. Phys. Chem. Polym., 229–237. 122.

    Google Scholar 

  141. Edsman, K. and Sundeloef, L.O. (1988) Interaction virial coefficients in some mixed polymer solutions. Polymer, 29, 535–540.

    Article  Google Scholar 

  142. Kaddour, L.O. and Strazielle, C. (1987) Experimental investigations of light scattering by a solution of two polymers. Polymer, 28, 459–468.

    Article  Google Scholar 

  143. Fukuda, T., Nagata, M., and Inagaki, H. (1987) Light scattering from polymer blend solutions. Data analysis for asymmetrical dilute systems. Macromolecules, 20, 654–658.

    Article  ADS  Google Scholar 

  144. Ogawa, E., Yamaguchi, N., and Shima, M. (1986) Estimation of the interaction parameter between polystyrene and poly(p-chlorostyrene) from osmotic pressure measurements. Polym. J., 18, 903–910.

    Article  Google Scholar 

  145. Kratochvil, P., Strakova, D., and Tuzar, Z. (1977) Interaction between polymers in dilute solutions of two polymers in a single solvent measured by light scattering and the compatibility of polymers. Brit. Polym. J., 9, 217–221.

    Article  Google Scholar 

  146. Hyde, A.J. (1972) Light scattering from polymer-polymer solvent systems. In Huglin, M.B. (ed.), Light Scattering from Polymer Solutions. Academic Press, New York, pp. 459–466.

    Google Scholar 

  147. Kuhn, R., Cantow, H.J., and Burchard, W. (1968) Incompatibility of polymer mixtures. I. Light-scattering measurements of the system polystyrene-poly(methyl methacrylate)-benzene. Ang. Makromol. Chem., 2, 146–156.

    Article  Google Scholar 

  148. Kuleznev, V.N., Krokhina, L.S., Lyakin, Y.I., and Dogadkin, B.A. (1964) Investigation of the structure of solutions of polymer mixtures by light scattering. Kolloidnyi Zh., 26, 475–480.

    Google Scholar 

  149. Benmouna, M., Briber, R., and Hammouda, B. (1997) Polymer blends, copolymers, and networks. Scattering properties and phase behavior. Macromol. Theory Simul., 6, 197–235.

    Article  Google Scholar 

  150. Benoit, H., Benmouna, M., Strazielle, C., Lapp, A., and Ould-Kaddour, L. (1991) Polymer and copolymer characterization by light and neutron scattering: theoretical considerations and experimental examples. J. Appl. Polym. Sci. Appl. Polym. Symp., 48, 315–334.

    Article  Google Scholar 

  151. Benmouna, M. and Benoit, H. (1983) Scattering from copolymer solutions at finite concentration. J. Polym. Sci. Polym. Phys. Ed., 21, 1227–1242.

    Article  ADS  Google Scholar 

  152. Benoit, H. (1956) Determination of the dimensions of anisotropic macromolecules by means of light scattering. Makromol. Chem., 18/19, 397–405.

    Article  Google Scholar 

  153. Benoit, H. and Stockmayer, W.H. (1956) A study of the influence of interactions on light scattered by a collection of particles. J. Phys. Radium., 17, 21–26.

    Article  Google Scholar 

  154. Akasaka, K., Nakamura, Y., Norisuye, T., and Teramoto, A. (1994) Second and third virial coefficients for polyisobutylene in heptane, an intermediate solvent. Polym. J., 26, 1387–1395.

    Article  Google Scholar 

  155. Nakamura, Y., Akasaka, K., Katayama, K., Norisuye, T., and Teramoto, A. (1992) Second and third virial coefficients for polyisobutylene in cyclohexane. Macromolecules, 25, 1134–1138.

    Article  ADS  Google Scholar 

  156. Bruns, W. (1997) The third osmotic virial coefficient of polymer solutions. Macromolecules, 30, 4429–4431.

    Article  ADS  Google Scholar 

  157. Stockmayer, W.H. and Casassa, E.F. (1952) The third virial coefficient in polymer solutions. J. Chem. Phys. 20, 1560–1566.

    Article  ADS  Google Scholar 

  158. Okumoto, M., Nakamura, Y., Norisuye, T., and Teramoto, A. (1998) Excluded-volume effects in star polymer solutions: four-arm star polystyrene in benzene. Macromolecules, 31, 1615–1620.

    Article  ADS  Google Scholar 

  159. Roovers, J., Toporowski, P.M., and Douglas, J. (1995) Thermodynamic properties of dilute and semidilute solutions of regular star polymers. Macromolecules, 28, 7064–7070.

    Article  ADS  Google Scholar 

  160. Akasaka, K., Nakamura, Y., Norisuye, T., and Teramoto, A. (1994) Second and third virial coefficients for polyisobutylene in the vicinity of the theta point. Polym. J., 26, 143, 363–371.

    Google Scholar 

  161. Okumoto, M., Terao, K., Nakamura, Y., Norisuye, T., and Teramoto, A. (1997) Excluded volume effects in star polymer solutions: four-arm star polystyrene in cyclohexane near the Q temperature. Macromolecules, 30, 7493–7499.

    Article  ADS  Google Scholar 

  162. Cherayil, B.J., Kholodenko, A.L., and Freed, K.F. (1987) Semidilute polymer solutions in the theta domain: a renormalization group study. J. Chem. Phys., 86, 7204–7217.

    Article  ADS  Google Scholar 

  163. Cherayil, B.J., Douglas, J.F., and Freed, K.F. (1985) Effect of residual interactions on polymer properties near the theta point. J. Chem. Phys., 83, 5293–5310.

    Article  ADS  Google Scholar 

  164. Carnahan, N.F. and Starling, K.E. (1969) Equation of state for nonattracting rigid spheres. J. Chem. Phys., 51, 635–636.

    Article  ADS  Google Scholar 

  165. Flory, P.J. and Daoust, H. (1957) Osmotic pressures of moderately concentrated polymer solutions. J. Polym. Sci., 25, 429–440.

    Article  ADS  Google Scholar 

  166. Eichinger, B.E. and Flory, P.J. (1968) Thermodynamics of polymer solutions. III. Polyisobutylene and cyclohexane. Trans. Faraday Soc., 64, 2061–2065.

    Article  Google Scholar 

  167. Noda, I., Higo, Y., Ueno, N., and Fujimoto, T. (1984) Semidilute region for linear polymers in good solvents. Macromolecules, 17, 1055–1059.

    Article  ADS  Google Scholar 

  168. Hoecker, H., Shih, H., and Flory, P.J. (1971) Thermodynamics of polystyrene solutions. Polystyrene and cyclohexane. Trans. Faraday Soc., 67, 2275–2281.

    Article  Google Scholar 

  169. Eichinger, B.E. and Flory, P.J. (1968) Thermodynamics of polymer solutions. II. Polyisobutylene and benzene. Trans. Faraday Soc., 64, 2053–2060.

    Article  Google Scholar 

  170. Shiomi, T., Izumi, Z., Hamada, F., and Nakajima, A. (1980) Thermodynamics of solutions of poly(dimethylsiloxane). 1. Solutions of poly(dimethylsiloxane) in methyl ethyl ketone, methyl isobutyl ketone, ethyl butyl ketone, and diisobutyl ketone. Macromolecules, 13, 1149–1154.

    Article  ADS  Google Scholar 

  171. Hager, B.L., Berry, G.C., and Tsai, H.H. (1987) Moderately concentrated solutions of polystyrene. II. Integrated-intensity light scattering as a function of concentration, temperature, and molecular weight. J. Polym. Sci. Polym. Phys., 25, 387–413.

    Article  ADS  Google Scholar 

  172. DeLong, L.M. and Russo, P.S. (1991) Thermodynamic and dynamic behavior of semiflexible polymers in the isotropic phase. Macromolecules, 24, 6139–6155.

    Article  ADS  Google Scholar 

  173. Chen, S.J. and Berry, G.C. (1990) Moderately concentrated solutions of polystyrene. Elastic and quasielastic light scattering at the Flory theta temperature. Polymer, 31, 793–804.

    Article  Google Scholar 

  174. Candau, F., Strazielle, C., and Benoit, H. (1976) Osmotic pressure study of linear and branched polystyrenes in solution. Determination of their thermodynamic parameters. Eur. Polym. J., 12, 95–103.

    Article  Google Scholar 

  175. Stepanek, P., Perzynski, R., Delsanti, M., and Adam, M. (1984) Osmotic compressibility measurements on semidilute polystyrene-cyclohexane solutions. Macromolecules, 17, 2340–2343.

    Article  ADS  Google Scholar 

  176. Flory, P.J. and Bueche, A.M. (1958) Theory of light scattering by polymer solutions. J. Polym. Sci., 27, 219–229.

    Article  ADS  Google Scholar 

  177. Benmouna, M., Fischer, E.W., Bensafi, A., and Khaldi, S. (1996) On the static scattering of linear and cyclic copolymers in solution. J. Polym. Sci. Polym. Phys., 34, 1629–1636.

    Article  ADS  Google Scholar 

  178. Benoit, H. and Benmouna, M. (1984) New approach to the problem of elastic scattering from a mixture of homopolymers in a concentrated solution. Macromolecules, 17, 535–540.

    Article  ADS  Google Scholar 

  179. Benoit, H. and Benmouna, M. (1984) Scattering from a polymer solution at an arbitrary concentration. Polymer, 25, 1059–1067.

    Article  Google Scholar 

  180. Akcasu, A.Z., Benmouna, M., and Benoit, H. (1986) Application of random phase approximation to the dynamics of polymer blends and copolymers. Polymer, 27, 1935–1942.

    Article  Google Scholar 

  181. Lapp, A. Picot, C. and Strazielle, C. (1985) Universality of the static properties of polymers in semidilute solution. J. phys., Lett. 46, 1031–1036.

    Article  Google Scholar 

  182. Kinning, D.J. and Thomas, E.L. (1984) Hard-sphere interactions between spherical domains in diblock copolymers. Macromolecules, 17, 1712–1718. 165.

    Article  ADS  Google Scholar 

  183. Kim, S.H., Ramsay, D.J., Patterson, G.D., and Selser, J.C. (1990) Static and dynamic light scattering of poly(α- methylstyrene) in toluene in the dilute region. J. Polym. Sci. Polym. Phys., 28, 2023–2056.

    Article  ADS  Google Scholar 

  184. Sedlak, M. (1996) Polyelectrolytes in solution. In Brown, W. (ed.), Light Scattering: Principles and Development. Clarendon Press, Oxford, pp. 120–165.

    Google Scholar 

  185. Grüner, F. and Lehmann, W. (1980) On the long time diffusion of interacting Brownian particles. In Degiorgio, V., Corti, M., and Giglio, M. (eds.), Light Scattering in Liquids and Macromolecular Solutions. Plenum Press, New York, pp. 51–69.

    Chapter  Google Scholar 

  186. Doty, P. and Steiner, R.F. (1952) Macro-ions. I. Light scattering theory and experiments with bovine serum albumin. J. Chem. Phys., 20, 85–94.

    Article  ADS  Google Scholar 

  187. Burchard, W. (1993) Macromolecular association phenomena. A neglected field of research? Trends Polym. Sci., 1, 192–198.

    Google Scholar 

  188. Yue, S., Berry, G.C., and Green, M.S. (1996) Intermolecular association and supramolecular organization in dilute solution 2 Light scattering and optical activity of poly(pbiphenylmethyl-l.-glutamate Macromolecules, 29, 6175–6182.

    Article  ADS  Google Scholar 

  189. Tanner, D.W. and Berry, G.C. (1974) Properties of cellulose acetate in solution. I. Light scattering, osmometry and viscometry on dilute solutions. J. Polym. Sci. Polym. Phys. Ed., 12, 941–975.

    Article  ADS  Google Scholar 

  190. Einaga, Y. and Berry, G.C. (1985) Studies on dilute solutions of rodlike macroions: III Integrated intensity and photon correlation light scattering investigation of association. In Dubin, P. (ed.), Microdomains in Polymer Solutions. Plenum Press, New York, pp. 191–210.

    Chapter  Google Scholar 

  191. Yue, S., Berry, G.C., and McCullough, R.D. (1996) Intermolecular association and supramolecular organization in dilute solution. 1. Regioregular poly(3-dodecylthiophene). Macromolecules, 29, 933–939.

    Article  ADS  Google Scholar 

  192. Furukawa, R. and Berry, G.C. (1985) Studies on dilute solutions of rodlike macroions. Aggregation with enhanced orientational correlation. Pure Appl. Chem., 57, 913–920.

    Article  Google Scholar 

  193. Nicolai, T., Durand, D., and Gimel, J-C. (1996) Scattering properties and modelling of aggregating and gelling systems. In Brown, W. (ed.), Light Scattering: Principles and Development. Clarendon Press, Oxford, pp. 201–231.

    Google Scholar 

  194. Elias, H.G. (1972) The study of association and aggregation via light scattering. In Huglin, M.B. (ed.), Light Scattering from Polymer Solutions. Academic Press, New York, pp. 397–457.

    Google Scholar 

  195. Yoshimura, S., Shirai, S., and Einaga, Y. (2004) Light-scattering characterization of wormlike micelles of hexaoxyethylene dodecyl C12 E6 and hexaoxyethylene tetradecyl C14E6 ethers in dilute aqueous solution. J. Phys. Chem. B, 108, 15477–15487.

    Article  Google Scholar 

  196. Sato, T. (2004) Scattering theory for threadlike micellar solutions. Langmuir, 20, 1095–1099.

    Article  Google Scholar 

  197. Provder, T., Barth, H.G., and Urban, M.W. (1995) Chromatographic Characterization Of Polymers: Hyphenated And Multidimensional Techniques. American Chemical Society, Washington, DC.

    Book  Google Scholar 

  198. Alb, A.M., Mignard, E., Drenski, M.F., and Reed, W.F. (2004) In situ time-dependent signatures of light scattered from solutions undergoing polymerization reactions. Macromolecules, 37, 2578–2587.

    Article  ADS  Google Scholar 

  199. Reed, W.F. (2002) Monitoring kinetic processes in polymer solutions with time dependent static light scattering (TDSLS). Macromol. Symp., 190, 131–150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Berry, G.C. (2008). Total Intensity Light Scattering from Solutions of Macromolecules. In: Borsali, R., Pecora, R. (eds) Soft Matter Characterization. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4465-6_2

Download citation

Publish with us

Policies and ethics