Skip to main content
  • 186 Accesses

Introduction

The existence of a paleomagnetic record testifies to the ability of magnetic minerals in rocks to retain their natural remanent magnetizations (NRMs) over geologic time. In the early days of paleomagnetism, it was thought that the stable components of NRM mainly resided in extremely small magnetic mineral grains, which occupied the single‐domain (SD) state. However, it is now recognized that, due to their very small size and scarcity, SD particles may not be the major carriers of NRM in many rocks. Instead, it is more likely that much of the NRM is carried by grains which, by virtue of their larger sizes, are subdivided into two or more magnetic domains (Figure M13).

Figure M13
figure 1_175

Illustrations of (a) a multidomain cube containing four domains and (b) a single‐domain cube of uniform magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Amar, H., 1858. Magnetization mechanism and domain structure of multidomain particles. Physical Review, 111: 149–153.

    Article  Google Scholar 

  • Ambatiello, A., Fabian, K., and Hoffmann, V., 1999. Magnetic domain structure of multidomain magnetite as a function of temperature: observation by Kerr microscopy. Physics of the Earth and Planetary Interiors, 112: 55–80.

    Article  Google Scholar 

  • Appel, E., and Soffel, H.C., 1984. Model for the domain state of Ti‐rich titanomagnetites. Geophysical Research Letters, 11: 189–192.

    Google Scholar 

  • Appel, E., and Soffel, H.C., 1985. Domain state of Ti‐rich titanomagnetites deduced from domain structure observations and susceptibility measurements. Journal of Geophysics, 56: 121–132.

    Google Scholar 

  • Becker, J.J., 1969. Observations of magnetization reversal in cobalt‐rare‐earth particles. IEEE Transactions on Magnetics, MAG‐5: 211–214.

    Article  Google Scholar 

  • Becker, J.J., 1971a. Magnetization discontinuities in cobalt‐rare‐earth particles. Journal of Applied Physics, 42: 1537–1538.

    Article  Google Scholar 

  • Becker, J.J., 1971b. Interpretation of hysteresis loops of cobalt‐rare‐earths. IEEE Transactions on Magnetics, MAG‐7: 644–647.

    Article  Google Scholar 

  • Becker, J.J., 1976. Reversal mechanism in copper‐modified cobalt‐rare‐earths. IEEE Transactions on Magnetics, MAG‐12: 965–967.

    Article  Google Scholar 

  • Bogdanov, A.K., and Ya. Vlasov, A., 1965. Domain structure in a single crystal of magnetite. (English trans.). Izvestiya Akademii Nauk, SSSR, Earth Physics, series no. 1., 28–32.

    Google Scholar 

  • Bogdanov, A.A., and Ya Vlasov, A., 1966. The domain structure of magnetite particles. (English trans.), Izvestiya Akademii Nauk, SSSR, Physics, Solid Earth, 9: 577–581.

    Google Scholar 

  • Boyd, J.R., Fuller, M., and Halgedahl, S., 1984. Domain wall nucleation as a controlling factor in the behaviour of fine magnetic particles in rocks. Geophysical Research Letters, 11: 193–196.

    Google Scholar 

  • Brown, W.F., 1963. Micromagnetics. New York: John Wiley, 143 pp.

    Google Scholar 

  • Chikazumi, S., 1964. Physics of Magnetism. New York: John Wiley, 664 pp.

    Google Scholar 

  • Cullity, B.D., 1972. Introduction to Magnetic Materials. Reading, MA, Addison‐Wesley, 666 pp.

    Google Scholar 

  • Dunlop, D.J., and Özdemir, O., 1997. Rock Magnetism: Fundamentals and Frontiers. UK, Cambridge: Cambridge University Press, 573 pp.

    Google Scholar 

  • Dunlop, D.J., Newell, A.J., and Enkin, R.J., 1994. Transdomain thermoremanent magnetization. Journal of Geophysical Research, 99: 19,741–19,755.

    Google Scholar 

  • Fabian, K., Kirchner, A.,Williams, W., Heider, F., and Leibl, T., Three‐dimensional micromagnetic calculations for magnetite using FFT. Geophysical Journal International, 124: 89–104.

    Google Scholar 

  • Foss, S., Moskowitz, B., and Walsh, B., 1996. Localized micromagnetic perturbation of domain walls in magnetite using a magnetic force microscope. Applied Physics Letters, 69: 3426–3428.

    Article  Google Scholar 

  • Foss, S., Moskowitz, B.M., Proksch, R., and Dahlberg, E.D., Domain wall structures in single‐crystal magnetite investigated by magnetic force microscopy. Journal of Geophysical Research, 103: 30,551–30,560.

    Google Scholar 

  • Frandson, C., Stipp, S.L.S., McEnroe, S.A., Madsen, M.B., and Knudsen, J.M., 2004. Magnetic domain structures and stray fields of individual elongated magnetite grains revealed by magnetic force microscopy (MFM). Physics of the Earth and Planetary Interiors, 141: 121–129.

    Article  Google Scholar 

  • Fukuma, K., and Dunlop, D.J., Grain‐size dependence of two‐dimensional micromagnetic structures for pseudo‐single‐domain magnetite (0.2–2.5 μm). Geophysical Journal International, 134: 843–848.

    Google Scholar 

  • Geiß, C.E., Heider, F., and Soffel, H.C., Magnetic domain observations on magnetite and titanomaghemite grains (0.5–10 μm). Geophysical Journal International, 124: 75–88.

    Google Scholar 

  • Halgedahl, S.L., 1987. Domain pattern observations in rock magnetism: progress and problems. Physics of the Earth and Planetary Interiors, 46: 127–163.

    Article  Google Scholar 

  • Halgedahl, S.L., 1991. Magnetic domain patterns observed on synthetic Ti‐rich titanomagnetite as a function of temperature and in states of thermoremanent magnetization. Journal of Geophysical Research, 96: 3943–3972.

    Google Scholar 

  • Halgedahl, S.L., 1995. Bitter patterns versus hysteresis behavior in small single particles of hematite. Journal of Geophysical Research, 100: 353–364.

    Article  Google Scholar 

  • Halgedahl, S.L., 1998. Barkhausen jumps in larger versus small platelets of natural hematite. Journal of Geophysical Research, 103: 30,575–30,589.

    Article  Google Scholar 

  • Halgedahl, S., and Fuller, M., 1980. Magnetic domain observations of nucleation processes in fine particles of intermediate titanomagnetite. Nature, 288: 70–72.

    Article  Google Scholar 

  • Halgedahl, S.L., and Fuller, M., 1981. The dependence of magnetic domain structure upon magnetization state in polycrystalline pyrrhotite. Physics of the Earth and Planetary Interiors, 26: 93–97.

    Article  Google Scholar 

  • Halgedahl, S., and Fuller, M., 1983. The dependence of magnetic domain structure upon magnetization state with emphasis upon nucleation as a mechanism for pseudo‐single domain behavior. Journal of Geophysical Research, 88: 6505–6522.

    Google Scholar 

  • Halgedahl, S.L., and Ye, J., 2000. Observed effects of mechanical grain‐size reduction on the domain structure of pyrrhotite. Earth and Planetary Science Letters, 176(3): 457–467.

    Article  Google Scholar 

  • Harrison, T.J., Dunin‐Borkowski, R.E., and Putnis, A., 2002. Direct imaging of nanoscale magnetic interactions in minerals. Proceedings of the National Academic Sciences, 99: 16,556–16,561.

    Google Scholar 

  • Heider, F., 1990. Temperature dependence of domain structure in natural magnetite and its significance for multi‐domain TRM models. Physics of the Earth and Planetary Interiors, 65: 54–61.

    Article  Google Scholar 

  • Heider, F., and Hoffmann, V., 1992. Magneto‐optical Kerr effect on magnetite crystals with externally applied fields. Earth and Planetary Science Letters, 108: 131–138.

    Article  Google Scholar 

  • Heider, F., Halgedahl, S.L., and Dunlop, D.J., 1988. Temperature dependence of magnetic domains in magnetite crystals. Geophysical Research Letters, 15: 499–502.

    Google Scholar 

  • Heisenberg, W., 1928. Zur Theorie des Ferromagnetismus. Zeitschrift fuer Physik, 49: 619–636.

    Article  Google Scholar 

  • Hoffmann, V., Schafer, R., Appel, E., Hubert, A., and Soffel, H., 1987. First domain observations with the magneto‐optical Kerr effect on Ti‐ferrites in rocks and their synthetic equivalents. Journal of Magnetism and Magnetic Materials, 71: 90–94.

    Article  Google Scholar 

  • Kittel, C., 1949. Physical theory of ferromagnetic domains. Reviews of Modern Physics, 21: 541–583.

    Article  Google Scholar 

  • Metcalf, M., and Fuller, M., 1987a. Magnetic remanence measurements of single particles and the nature of domain patterns in titanomagnetites. Geophysical Research Letters, 14: 1207–1210.

    Google Scholar 

  • Metcalf, M., and Fuller, M., 1987b. Domain observations of titanomagnetites during hysteresis at elevated temperatures and thermal cycling. Physics of the Earth and Planetary Interiors, 46: 120–126.

    Article  Google Scholar 

  • Metcalf, M., and Fuller, M., 1988. A synthetic TRM induction curve for fine particles generated from domain observations. Geophysical Research Letters, 15: 503–506.

    Google Scholar 

  • Moloni, K., Moskowitz, B.M., and Dahlberg, E.D., 1996. Domain structures in single crystal magnetite below the Verwey transition as observed with a low‐temperature magnetic force microscope. Geophysical Research Letters, 23: 2851–2854.

    Article  Google Scholar 

  • Moon, T., and Merrill, R.T., 1984. The magnetic moments of non‐uniformly magnetized grains. Physics of the Earth and Planetary Interiors, 34: 186–194.

    Article  Google Scholar 

  • Moon, T.S., and Merrill, R.T., 1985. Nucleation theory and domain states in multidomain magnetic material. Physics of the Earth and Planetary Interiors, 37: 214–222.

    Article  Google Scholar 

  • Moskowitz, B.M., and Banerjee, S.K., 1979. Grain size limits for pseudosingle domain behavior in magnetite: implications for paleomagnetism. IEEE Transactions on Magnetics, MAG15: 1241–1246.

    Article  Google Scholar 

  • Moskowitz, B.M., and Halgedahl, S.L., Theoretical temperature and grain‐size dependence of domain state in x = 0.6 titanomagnetite. Journal of Geophysical Research, 92: 10,667–10,682.

    Google Scholar 

  • Moskowitz, B.M., Halgedahl, S.L., and Lawson, C.A., 1988. Magnetic domains on unpolished and polished surfaces of titanium‐rich titanomagnetite. Journal of Geophysical Research, 93: 3372–3386.

    Google Scholar 

  • Muxworthy, A.R., and Williams, W., Micromagnetic calculations of hysteresis as a function of temperature in pseudo‐single domain magnetite. Geophysical Research Letters, 26: 1065–1068.

    Google Scholar 

  • Newell, A.J., Dunlop, D.J., and Williams, W., 1993. A two‐dimensional micromagnetic model of magnetization and fields in magnetite. Journal of Geophysical Research, 98: 9533–9549.

    Google Scholar 

  • Özdemir, O., and Dunlop, D.J., 1993. Magnetic domain structures on a natural single crystal of magnetite. Geophysical Research Letters, 20: 1835–1838.

    Google Scholar 

  • Özdemir, O., and Dunlop, D.J., 1997. Effect of crystal defects and internal stress on the domain structure and magnetic properties of magnetite. Journal of Geophysical Research, 102: 20, 211–20,224.

    Google Scholar 

  • Özdemir, O., Xu, S., and Dunlop, D.J., 1995. Closure domains in magnetite. Journal of Geophysical Research, 100: 2193–2209.

    Article  Google Scholar 

  • Pokhil, T.G., and Moskowitz, B.M., 1996. Magnetic force microscope study of domain wall structures in magnetite. Journal of Applied Physics, 79: 6064–6066.

    Article  Google Scholar 

  • Pokhil, T.G., and Moskowitz, B.M., 1997. Magnetic domains and domain walls in pseudo‐single‐domain magnetite studied with magnetic force microscopy. Journal of Geophysical Research, 102: 22,681–22,694.

    Google Scholar 

  • Proksch, R.B., Foss, S., and Dahlberg, E.D., 1994. High resolution magnetic force microscopy of domain wall fine structures. IEEE Transactions on Magnetics, 30: 4467–4472.

    Article  Google Scholar 

  • Rhodes, P., and Rowlands, G., 1954. Demagnetizing energies of uniformly magnetised rectangular blocks. Proceedings of the Leeds Philosophical and Literary Society, Science Section, 6: 191–210.

    Google Scholar 

  • Smith, P.P.K., 1980. The application of Lorentz electron microscopy to the study of rock magnetism. Institute of Physics Conference Series, 52: 125–128.

    Google Scholar 

  • Soffel, H., 1971. The single‐domain‐multidomain transition in natural intermediate titanomagnetites. Zeitschrift fuer Geophysik, 37: 451–470.

    Google Scholar 

  • Soffel, H.C., 1977. Domain structure of titanomagnetites and its variation with temperature. Journal of Geomagnetism and Geoelectricity, 29: 277–284.

    Google Scholar 

  • Soffel, H., 1977. Pseudo‐single‐domain effects and single‐domain multidomain transition in natural pyrrhotite deduced from domain structure observations. Journal of Geophysics, 42: 351–359.

    Google Scholar 

  • Soffel, H.C., Aumuller, C., Hoffmann, V., and Appel, E., 1990. Three‐dimensional domain observations of magnetite and titanomagnetites using the dried colloid SEM method. Physics of the Earth and Planetary Interiors, 65: 43–53.

    Article  Google Scholar 

  • Stacey, F.D., and Banerjee, S.K., 1974. The Physical Principles of Rock Magnetism. Amsterdam: Elsevier, 195 pp.

    Google Scholar 

  • Szymczak, R., 1968. The magnetic structure of ferromagnetic materials of uniaxial structure. Electronics Technology, 1: 5–43.

    Google Scholar 

  • Weiss, P., 1907. L'hypothèse du champ moléculaire et la propriété ferromagnétique. Journal of Physique, 6: 661–690.

    Google Scholar 

  • Williams, W., and Dunlop, D.J., 1989. Three‐dimensional micromagnetic modelling of ferromagnetic domain structure. Nature, 337: 634–637.

    Article  Google Scholar 

  • Williams, W., and Dunlop, D.J., 1990. Some effects of grain shape and varying external magnetic fields on the magnetic structure of small grains of magnetite. Physics of the Earth and Planetary Interiors, 65: 1–14.

    Article  Google Scholar 

  • Williams, W., and Dunlop, D.J., 1995. Simulation of magnetic hysteresis in pseudo‐single‐domain grains of magnetite. Journal of Geophysical Research, 100: 3859–3871.

    Article  Google Scholar 

  • Williams, W., and Wright, T.M., 1998. High‐resolution micromagnetic models of fine grains of magnetite. Journal of Geophysical Research, 103: 30,537–30,550.

    Google Scholar 

  • Williams, W., Hoffmann, V., Heider, F., Goddenhenreich, T., and Heiden, C., 1992. Magnetic force microscopy imaging of domain walls in magnetite. Geophysical Journal International, 111: 417–423.

    Article  Google Scholar 

  • Worm, H.‐U., and Markert, H., 1987. The preparation of dispersed titanomagnetite particles by the glass‐ceramic method. Physics of the Earth and Planetary Interiors, 46: 263–270.

    Article  Google Scholar 

  • Worm, H.‐U., Ryan, P.J., and Banerjee, S.K., 1991. Domain size, closure domains, and the importance of magnetostriction in magnetite. Earth and Planetary Science Letters, 102: 71–78.

    Article  Google Scholar 

  • Xu, S., Dunlop, D.J., and Newell, A.J., 1994. Micromagnetic modelling of two‐dimensional domain structures in magnetite. Journal of Geophysical Research, 99: 9035–9044.

    Article  Google Scholar 

  • Ye, J., and Halgedahl, S.L., 2000. Theoretical effects of mechanical grain‐size reduction on GEM domain states in pyrrhotite. Earth and Planetary Science Letters, 178: 73–85.

    Article  Google Scholar 

  • Ye, J., and Merrill, R.T., 1995. The use of renormalization group theory to explain the large variation of domain states observed in titanomagnetites and implications for paleomagnetism. Journal of Geophysical Research, 100: 17,899–17,907.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Halgedahl, S.L. (2007). Magnetic Domains. In: Gubbins, D., Herrero-Bervera, E. (eds) Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4423-6_175

Download citation

Publish with us

Policies and ethics