Skip to main content

Hurricane (Typhoon, Cyclone)

  • Reference work entry
  • First Online:
Encyclopedia of Natural Hazards

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Tropical cyclone. An organized, cyclonically rotating system of convection driven by fluxes of heat derived from the ocean. Tropical cyclones are classified by their intensities using nomenclature that varies regionally. Tropical storms are tropical cyclones that have maximum sustained winds between 17 and 32 m/s (34–63 kts); intense tropical cyclones – those with winds of at least 33 m/s (64 kts) – are called hurricanes in the Atlantic and eastern North Pacific basins and typhoons in the western North Pacific. Typhoons whose maximum sustained 1-minute surface winds exceed 65 m/s (130 kts) are called super typhoons, and the strongest hurricanes (Category 3 or higher on the Saffir-Simpson Hurricane Wind Scale; see Tables 1 and 2) are classified as major hurricanes in the Western Hemisphere. In the Indian Ocean and South Pacific, tropical cyclones are referred to as cyclones.

Hurricane (Typhoon, Cyclone), Table 1 Original Saffir-Simpson scale of hurricane intensity (Simpson...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Bengtsson, L., Hodges, K. I., Esch, M., Keenlyside, N., Kornbleuh, L., Luo, J.-J., and Yamagata, T., 2007. How may tropical cyclones change in a warmer climate? Tellus, 59, 539–561.

    Article  Google Scholar 

  • Bister, M., and Emanuel, K., 1997. The genesis of hurricane Guillermo: TEXMEX analyses and a modeling study. Monthly Weather Review, 125, 2662–2682.

    Article  Google Scholar 

  • Bister, M., and Emanuel, K., 1998. Dissipative heating and hurricane intensity. Meteorology and Atmospheric Physics, 65, 233–240.

    Article  Google Scholar 

  • Bui, H. H., Smith, R. K., Montgomery, M. T., and Peng, J., 2009. Balanced and unbalanced aspects of tropical cyclone intensification. Quarterly Journal of the Royal Meteorological Society, 135, 1715–1731.

    Article  Google Scholar 

  • Camargo, S. J., Emanuel, K. A., and Sobel, A. H., 2007. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. Journal of Climate, 20, 4819–4834.

    Article  Google Scholar 

  • Dean, L., Emanuel, K. A., and Chavas, D. R., 2009. On the size distribution of Atlantic tropical cyclones. Geophysical Research Letters, 36, L14803, doi:10.1029/2009GL039051.

    Article  Google Scholar 

  • DeMaria, M., 1996. The effect of vertical shear on tropical cyclone intensity change. Journal of the Atmospheric Sciences, 53, 2076–2087.

    Article  Google Scholar 

  • DeMaria, M., and Kaplan, J., 1994. Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. Journal of Climate, 7, 1324–1334.

    Article  Google Scholar 

  • Emanuel, K. A., 1986. An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. Journal of the Atmospheric Sciences, 43, 585–604.

    Article  Google Scholar 

  • Emanuel, K. A., 1988. The maximum intensity of hurricanes. Journal of the Atmospheric Sciences, 45, 1143–1155.

    Article  Google Scholar 

  • Emanuel, K. A., 2000. A statistical analysis of tropical cyclone intensity. Monthly Weather Review, 128, 1139–1152.

    Article  Google Scholar 

  • Emanuel, K. A., 2003. Tropical cyclones. Annual Review of Earth and Planetary Sciences, 31, 75–104.

    Article  Google Scholar 

  • Emanuel, K., 2010. Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908-1958. Journal of Advances in Modeling Earth Systems, 2, doi:10.3894/JAMES.2010.2.1.

    Google Scholar 

  • Frank, W., and Ritchie, E., 2001. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Monthly Weather Review, 129, 2249–2269.

    Article  Google Scholar 

  • Gray, W. M., 1968. A global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96, 669–700.

    Article  Google Scholar 

  • Gray, W. M., 1979. Hurricanes: their formation, structure and likely role in the tropical circulation. In Shaw, D. B. (ed.), Meteorology Over Tropical Oceans. Bracknell, Berkshire: James Glaisher House, Royal Meteorological Society, pp. 155–218.

    Google Scholar 

  • Hill, K. A., and Lackmann, G. M., 2009. Influence of environmental humidity on tropical cyclone size. Monthly Weather Review, 137, 3294–3315.

    Article  Google Scholar 

  • Holland, G., 1997. The maximum potential intensity of tropical cyclones. Journal of the Atmospheric Sciences, 54, 2519–2541.

    Article  Google Scholar 

  • Houze, R. A., Jr., 2010. Clouds in tropical cyclones. Monthly Weather Review, 138, 293–344.

    Article  Google Scholar 

  • Kleinschmidt, E., Jr., 1951. Gundlagen einer theorie des tropischen zyklonen. Archives for Meteorology Geophysics Bioklimatology Series A, 4, 53–72.

    Article  Google Scholar 

  • Kossin, J. P., Schubert, W. H., and Montgomery, M. T., 2000. Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. Journal of Atmospheric Sciences, 57, 3893–3917.

    Article  Google Scholar 

  • Landsea, C. W., co-authors, 2004. The Atlantic hurricane database re-analysis project: Documentation for the 1851-1910 alterations and additions to the HURDAT database. In Murnane, J., and Liu, K.-B. (eds.), Hurricanes and Typhoons: Past, Present, and Future. New York: Columbia University Press, pp. 177–221.

    Google Scholar 

  • Liu, K.-B., and Fearn, M. L., 1993. Lake-sediment record of late Holocene hurricane activities from coastal Alabama. Geology, 21, 793–796.

    Article  Google Scholar 

  • Mallen, K. J., Montgomery, M. T., and Wang, B., 2005. Reexamining the near-core radial structure of the tropical cyclone primary circulation: implications for vortex resiliency. Journal of Atmospheric Sciences, 62, 408–425.

    Article  Google Scholar 

  • McBride, J. L., and Zehr, R., 1981. Observational analysis of tropical cyclone formation. Part II: comparison of non-developing versus developing systems. Journal of Atmospheric Sciences, 38, 1132–1151.

    Article  Google Scholar 

  • Price, J. F., 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11, 153–175.

    Article  Google Scholar 

  • Price, J. F., 1983. Internal wave wake of a moving storm. Part I: scales, energy budget, and observations. Journal of Physical Oceanography, 13, 949–965.

    Article  Google Scholar 

  • Riehl, H., 1950. A model for hurricane formation. Journal of Applied Physics, 21, 917–925.

    Article  Google Scholar 

  • Rotunno, R., and Emanuel, K. A., 1987. An air-sea interaction theory for tropical cyclones. Part II: evolutionary study using axisymmetric nonhydrostatic numerical model. Journal of Atmospheric Sciences, 44, 542–561.

    Article  Google Scholar 

  • Rotunno, R., Chen, Y., Wang, W., Davis, C., Dudhia, J., and Holland, C. L., 2009. Large-eddy simulation of an idealized tropical cyclone. Bulletin of the American Meteorological Society, 90, 1783–1788.

    Article  Google Scholar 

  • Schade, L. R., and Emanuel, K. A., 1999. The ocean’s effect on the intensity of tropical cyclones: results from a simple coupled atmosphere-ocean model. Journal of Atmospheric Sciences, 56, 642–651.

    Article  Google Scholar 

  • Simpson, R. H., and Riehl, R., 1958. Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. In Technology Conference on Hurricanes. American Meteorological Society, Miami Beach, FL, pp. D4-1–D4-10.

    Google Scholar 

  • Simpson, R. H., and Riehl, H., 1981. The hurricane and its impact. Baton Rouge: Louisiana State University Press. 398 pp.

    Google Scholar 

  • Smith, R. B., 1993. A hurricane beta-drift law. Journal of Atmospheric Sciences, 50, 3213–3215.

    Article  Google Scholar 

  • Tang, B., and Emanuel, K., 2010. Mid-level ventilation’s constraint on tropical cyclone intensity. Journal of Atmospheric Sciences, 67, 1817–1830.

    Article  Google Scholar 

  • Wu, L., and Braun, S., 2004. Effects of environmentally induced asymmetries on hurricane intensity: a numerical study. Journal of Atmospheric Sciences, 61, 3065–3081.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Korty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Korty, R. (2013). Hurricane (Typhoon, Cyclone). In: Bobrowsky, P.T. (eds) Encyclopedia of Natural Hazards. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4399-4_175

Download citation

Publish with us

Policies and ethics